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Abstract

The goal of low-level vision is to estimate an underlying scene, given
an observed image. Real-world scenes (eg, albedos or shapes) can be
very complex, conventionally requiring high dimensional representations
which are hard to estimate and store. We propose a low-dimensional rep-
resentation, called a scene recipe, that relies on the image itself to de-
scribe the complex scene configurations. Shape recipes are an example:
these are the regression coefficients that predict the bandpassed shape
from image data. We describe the benefits of this representation, and
show two uses illustrating their properties: (1) we improve stereo shape
estimates by learning shape recipes at low resolution and applying them
at full resolution; (2) Shape recipes implicitly contain information about
lighting and materials and we use them for material segmentation.

1 Introduction

From images, we want to estimate various low-level scene properties such as shape, ma-
terial, albedo or motion. For such an estimation task, the representation of the quantities
to be estimated can be critical. Typically, these scene properties might be represented as a
bitmap (eg [14]) or as a series expansion in a basis set of surface deformations (eg [10]).
To represent accurately the details of real-world shapes and textures requires either full-
resolution images or very high order series expansions. Estimating such high dimensional
quantities is intrinsically difficult [2]. Strong priors [14] are often needed, which can give
unrealistic shape reconstructions.

Here we propose a new scene representation with appealing qualities for estimation. The
approach we propose is to let the image itself bear as much of the representational burden
as possible. We assume that the image is always available and we describe the underlying
scene in reference to the image. The scene representation is a set of rules for transforming
from the local image information to the desired scene quantities. We call this representation
a scene recipe: a simple function for transforming local image data to local scene data. The
computer doesn’t have to represent every curve of an intricate shape; the image does that for
us, the computer just stores the rules for transforming from image to scene. In this paper,
we focus on reconstructing the shapes that created the observed image, deriving shape
recipes. The particular recipes we study here are regression coefficients for transforming
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Figure 1: 1-d example: The image (a) is rendered from the shape (b). The shape depends on
the image in a non-local way. Bandpass filtering both signals allows for a local shape recipe.
The dotted line (which agrees closely with true solid line) in (d) shows shape reconstruction
from 9-parameter linear regression (9-tap convolution) from bandpassed image, (c).

bandpassed image data into bandpassed shape data.

2 Shape Recipes

The shape representation consists in describing, for a particular image, the functional re-
lationship between image and shape. This relationship is not general for all images, but
specific to the particular lighting and material conditions at hand. We call this functional
relationship the shape recipe.

To simplify the computation to obtain shape from image data, we require that the scene
recipes be local: the scene structure in a region should only depend on a local neighbor-
hood of the image. It is easy to show that, without taking special care, the shape-image
relationship is not local. Fig. 1 (a) shows the intensity profile of a 1-d image arising from
the shape profile shown in Fig. 1 (b) under particular rendering conditions (a Phong model
with 10% specularity). Note that the function to recover the shape from the image cannot
be local because the identical local images on the left and right sides of the surface edge
correspond to different shape heights.

In order to obtain locality in the shape-image relationship, we need to preprocess the shape
and image signals. When shape and image are represented in a bandpass pyramid, within
a subband, under generic rendering conditions [4], local shape changes lead to local image
changes. (Representing the image in a Gaussian pyramid also gives a local relationship be-
tween image and bandpassed shape, effectively subsuming the image bandpass operation
into the shape recipe. That formulation, explored in [16], can give slightly better perfor-
mance and allows for simple non-linear extensions.) Figures 1 (c) and (d) are bandpass
filtered versions of (a) and (b), using a second-derivative of a Gaussian filter. In this ex-
ample, (d) relates to (c) by a simple shape recipe: convolution with a 9-tap filter, learned
by linear regression from rendered random shape data. The solid line shows the true band-
passed shape, while the dotted line is the linear regression estimate from Fig. 1 (c).

For 2-d images, we break the image and shape into subbands using a steerable pyramid
[13], an oriented multi-scale decomposition with non-aliased subbands (Fig. 3 (a) and (b)).
A shape subband can be related to an image intensity subband by a function

Zk = fk(Ik) (1)
where fk is a local function and Zk and Ik are the kth subbands of the steerable pyramid
representation of the shape and image, respectively. The simplest functional relationship
between shape and image intensity is via a linear filter with a finite size impulse response:
Zk ≈ rk ⋆ Ik, where ⋆ is convolution. The convolution kernel rk (specific to each scale
and orientation) transforms the image subband Ik into the shape subband Zk. The recipe
rk at each subband is learned by minimizing

∑
x |Zk − Ik ⋆ rk|2, regularizing rk as needed

to avoid overfitting. rk contains information about the particular lighting conditions and
the surface material. More general functions can be built by using non-linear filters and
combining image information from different orientations and scales [16].
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Figure 2: Shape estimate from stereo. (a) is one image of the stereo pair; the stereo recon-
struction is depicted as (b) a range map and (c) a surface plot and (d) a re-rendering of the
stereo shape. The stereo shape is noisy and misses fine details.

We conjecture that multiscale shape recipes have various desirable properties for estima-
tion. First, they allow for a compact encoding of shape information, as much of the com-
plexity of the shape is encoded in the image itself. The recipes need only specify how to
translate image into shape. Secondly, regularities in how the shape recipes fk vary across
scale and space provide a powerful mechanism for regularizing shape estimates. Instead
of regularizing shape estimates by assuming a prior of smoothness of the surface, we can
assume a slow spatial variation of the functional relationship between image and shape,
which should make estimating shape recipes easier. Third, shape recipes implicitly encode
lighting and material information, which can be used for material-based segmentation. In
the next two sections we discuss the properties of smoothness across scale and space and
we show potential applications in improving shape estimates from stereo and in image
segmentation based on material properties.

3 Scaling regularities of shape recipes

Fig. 2 shows one image of a stereo pair and the associated shape estimated from a stereo
algorithm1. The shape estimate is noisy in the high frequencies (see surface plot and re-
rendered shape), but we assume it is accurate in the low spatial frequencies.

Fig. 3 shows the steerable pyramid representations of the image (a) and shape (b) and the
learned shape recipes (c) for each subband (linear convolution kernels that give the shape
subband from the image subband). We exploit the slow variation of shape recipes over scale
and assume that the shape recipes are constant over the top four octaves of the pyramid2
Thus, from the shape recipes learned at low-resolution we can reconstruct a higher resolu-
tion shape estimate than the stereo output, by learning the rendering conditions then taking
advantage of shape details visible in the image but not exploited by the stereo algorithm.
Fig. 4 (a) and (b) show the image and the implicit shape representation: the pyramid’s low-
resolution shape and the shape recipes used over the top four scales. Fig. 4 (c) and (d) show
explicitly the reconstructed shape implied by (a) and (b): note the high resolution details,
including the fine structure visible in the bottom left corner of (d). Compare with the stereo

1We took our stereo photographs using a 3.3 Megapixel Olympus Camedia C-3040 camera, with
a Pentax stereo adapter. We calibrated the stereo images using the point matching algorithm of Zhang
[18], and rectifi ed the stereo pair (so that epipoles are along scan lines) using the algorithm of [8],
estimating disparity with the Zitnick–Kanade stereo algorithm [19].

2Except for a scale factor. We scale the amplitude of the fi xed recipe convolution kernels by 2
for each octave, to account for the differentiation operation in the linear shading approximation to
Lambertian rendering [7].
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Figure 3: Learning shape recipes at each subband. (a) and (b) are the steerable pyramid
representations [13] of image and stereo shape. (c) shows the convolution kernels that best
predict (b) from (a). The steerable pyramid isolates information according to scale (the
smaller subband images represent larger spatial scales) and orientation (clockwise among
subbands of one size: vertical, diagonal, horizontal, other diagonal).

(a) image

(b) low-res shape
(center, top row) and
recipes (for each

subband orientation) (c) recipes shape (surface plot) (d) re-rendered
recipes shape

Figure 4: Reconstruction from shape recipes. The shape is represented by the information
contained in the image (a), the low-res shape pyramid residual and the shape recipes (b)
estimated at the lowest resolution. The shape can be regenerated by applying the shape
recipes (b) at the 4 highest resolution scales, then reconstructing from the shape pyramid.
(d) shows the image re-rendered under different lighting conditions than (a). The recon-
struction is not noisy and shows more detail than the stereo shape, Fig. 2, including the fine
textures visible at the bottom left of the image (a) but not detected by the stereo algorithm.

output in Fig. 2.

4 Segmenting shape recipes

Segmenting an image into regions of uniform color or texture is often an approximation
to an underlying goal of segmenting the image into regions of uniform material. Shape
recipes, by describing how to transform from image to shape, implicitly encode both light-
ing and material properties. Across unchanging lighting conditions, segmenting by shape
recipes allows us to segment according to a material’s rendering properties, even overcom-
ing changes of intensities or texture of the rendered image. (See [6] for a non-parametric
approach to material segmentation.)

We expect shape recipes to vary smoothly over space except for abrupt boundaries at
changes in material or illumination. Within each subband, we can write the shape Zk
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Figure 5: Segmentation example. Shape (a), with a horizontal orientation discontinuity, is
rendered with two different shading models split vertically, (b). Based on image informa-
tion alone, it is difficult to find a good segmentation into 2 groups, (c). A segmentation into
2 different shape recipes naturally falls along the vertical material boundary, (d).

as a mixture of recipes:

p(Zk|Ik) =
N∑

n=1

p(Zk − fk,n(Ik))pn (2)

where N specifies the number of recipes needed to explain the underlying shape Zk. The
weights pn, which will be a function of location, will specify which recipe has to be used
within each region and, therefore, will provide a segmentation of the image.

To estimate the parameters of the mixture (shape recipes and weights), given known shape
and the associated image, we use the EM algorithm [17]. We encourage spatial continuity
for the weights pn as neighboring pixels are likely to belong to the same material. We
use the mean field approximation to implement the spatial smoothness prior in the E step,
suggested in [17].

Figure 5 shows a segmentation example. (a) is a fractal shape, with diagonal left structure
across the top half, and diagonal right structure across the bottom half. Onto that shape,
we “painted” two different Phong shading renderings in the two vertical halves, shown
in (b) (the right half is shinier than the left). Thus, texture changes in each of the four
quadrants, but the only material transition is across the vertical centerline. An image-based
segmentation, which makes use of texture and intensity cues, among others, finds the four
quadrants when looking for 4 groups, but can’t segment well when forced to find 2 groups,
(c). (We used the normalized cuts segmentation software, available on-line [11].) The
shape recipes encode the relationship between image and shape when segmenting into 2
groups, and finds the vertical material boundary, (d).

5 Occlusion boundaries

Not all image variations have a direct translation into shape. This is true for paint bound-
aries and for most occlusion boundaries. These cases need to be treated specially with
shape recipes. To illustrate, in Fig. 6 (c) the occluding boundary in the shape only pro-
duces a smooth change in the image, Fig. 6 (a). In that region, a shape recipe will produce
an incorrect shape estimate, however, the stereo algorithm will often succeed at finding
those occlusion edges. On the other hand, stereo often fails to provide the shape of im-
age regions with complex shape details, where the shape recipes succeed. For the special
case of revising the stereo algorithm’s output using shape recipes, we propose a statistical
framework to combine both sources of information. We want to estimate the shape Z that
maximizes the likelihood given the shape from stereo S and shape from image intensity I
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Figure 6: One way to handle occlusions with shape recipes. Image in full-res (a) and
one steerable pyramid subband (b); stereo depth, full-res (c) and subband (d). (e) shows
subband of shape reconstruction using learned shape recipe. Direct application of shape
recipe across occlusion boundary misses the shape discontinuity. Stereo algorithm catches
that discontinuity, but misses other shape details. Probabilistic combination of the two
shape estimates (f, subband, g, surface), assuming Laplacian shape statistics, captures the
desirable details of both, comparing favorably with laser scanner ground truth, (h, subband,
i, surface, at slight misalignment from photos).

via shape recipes:
p(Z|S, I) = p(S, I|Z)p(Z)/p(S, I) (3)

(For notational simplicity, we omit the spatial dependency from I , S andZ .) As both stereo
S and image intensity I provide strong constraints for the possible underlying shape Z , the
factor p(Z) can be considered constant in the region of support of p(S, I|Z). p(S, I) is a
normalization factor. Eq. (3) can be simplified by assuming that the shapes from stereo and
from shape recipes are independent. Furthermore, we also assume independence between
the pixels in the image and across subbands:

p(S, I|Z) =
∏

k

∏

x,y

p(Sk|Zk)p(Ik|Zk) (4)

Sk, Zk and Ik refer to the outputs of the subband k. Although this is an oversimplification
it simplifies the analysis and provides good results.

The terms p(Sk|Zk) and p(Ik|Zk) will depend on the noise models for the depth from
stereo and for the shape recipes. For the shape estimate from stereo we assume a Gaussian
distribution for the noise. At each subband and spatial location we have:

p(Sk|Zk) = ps(Zk − Sk) =
e−|Zk−Sk|2/σ2

s

(2π)1/2σs
(5)

In the case of the shape recipes, a Gaussian noise model is not adequate. The distribution
of the error Zk − fk(Ik) will depend on image noise, but more importantly, on all shape
and image variations that are not functionally related with each other through the recipes.
Fig. 6 illustrates this point: the image data, Fig. 6 (b) does not describe the discontinuity that



exists in the shape, Fig. 6(h). When trying to estimate shape using the shape recipe fk(Ik),
it fails to capture the discontinuity although it captures correctly other texture variations,
Fig. 6 (e). Therefore, Zk − fk(Ik) will describe the distribution of occluding edges that
do not produce image variations and paint edges that do not translate into shape variations.
Due to the sparse distribution of edges in images (and range data), we expect Zk − fk(Ik)
to have a Laplacian distribution typical of the statistics of wavelet outputs of natural images
[12]:

p(Ik|Zk) = p(Zk − fk(Ik)) =
e−|Zk−fk(Ik)|p/σp

i

2σi/pΓ(1/p)
(6)

In order to verify this, we use the stereo information at the low spatial resolutions that we
expect is correct so that: p(Zk − fk(Ik)) ≃ p(Sk − fk(Ik)). We obtain values of p in the
range (0.6, 1.2). We set p = 1 for the results shown here. Note that p = 2 gives a Gaussian
distribution.

The least square estimate for the shape subband Zk given both stereo and image data, is:

Ẑk =
∫

Zkp(Zk|Sk, Ik)dZk =
∫

Zkp(Sk|Zk)p(Ik|Zk)dZk∫
p(Sk|Zk)p(Ik|Zk)dZk

(7)

This integral can be evaluated numerically independently at each pixel. When p = 2,
then the LSE estimation is a weighted linear combination of the shape from stereo and
shape recipes. However, with p ≃ 1 this problem is similar to the one of image denosing
from wavelet decompositions [12] providing a non-linear combination of stereo and shape
recipes. The basic behavior of Eq. (7) is to take from the stereo everything that cannot
be explained by the recipes, and to take from the recipes the rest. Whenever both stereo
and shape recipes give similar estimates, we prefer the recipes because they are more accu-
rate than the stereo information. Where stereo and shape recipes differ greatly, such as at
occlusions, then the shape estimate follows the stereo shape.

6 Discussion and Summary

Unlike shape-from-shading algorithms [5], shape recipes are fast, local procedures for
computing shape from image. The approximation of linear shading [7] also assumes a
local linear relationship between image and shape subbands. However, learning the re-
gression coefficients allows a linearized fit to more general rendering conditions than the
special case of Lambertian shading for which linear shading was derived.

We have proposed shape recipes as a representation that leaves the burden of describ-
ing shape details to the image. Unlike many other shape representations, these are low-
dimensional, and should change slowly over time, distance, and spatial scale. We expect
that these properties will prove useful for estimation algorithms using these representations,
including non-linear extensions [16].

We showed that some of these properties are indeed useful in practice. We developed a
shape estimate improver that relies on an initial estimate being accurate at low resolutions.
Assuming that a shape recipes change slowly over 4 octaves of spatial scale, we learned the
shape recipes at low resolution and applied them at high resolution to find shape from image
details not exploited by the stereo algorithm. Comparisons with ground truth shapes show
good results. Shape recipes fold in information about both lighting and material properties
and can also be used to estimate material boundaries over regions where the lighting is
assumed to be constant.

Gilchrist and Adelson describe “atmospheres”, which are local formulas for converting
image intensities to perceived lightness values [3, 1]. In this framework, atmospheres are
“lightness recipes”. A full description of an image in terms of a scene recipe would re-
quire both shape recipes and reflectance recipes (for computing reflectance values from



image data), which also requires labelling parts of the image as being caused by shading or
reflectance changes, such as [15].

At a conceptual level, this representation is consistent with a theme in human vision re-
search, that our visual systems use the world as a framebuffer or visual memory, not storing
in the brain what can be obtained by looking [9]. Using shape recipes, we find simple trans-
formation rules that let us convert from image to shape whenever we need to, by examining
the image.

We thank Ray Jones and Leonard McMillan for providing Cyberware scans, and Hao Zhang for code
for rectification of stereo images. This work was funded by the Nippon Telegraph and Telephone
Corporation as part of the NTT/MIT Collaboration Agreement.
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