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Best-Buddies Similarity - Robust Template
Matching using Mutual Nearest Neighbors

Shaul Oron, Tali Dekel, Tianfan Xue, William T. Freeman, Shai Avidan

F

Abstract—We propose a novel method for template matching in uncon-
strained environments. Its essence is the Best-Buddies Similarity (BBS),
a useful, robust, and parameter-free similarity measure between two
sets of points. BBS is based on counting the number of Best-Buddies
Pairs (BBPs)—pairs of points in source and target sets, where each
point is the nearest neighbor of the other. BBS has several key features
that make it robust against complex geometric deformations and high
levels of outliers, such as those arising from background clutter and
occlusions. We study these properties, provide a statistical analysis that
justifies them, and demonstrate the consistent success of BBS on a
challenging real-world dataset while using different types of features.

1 INTRODUCTION

Finding a template patch in a target image is a core component
in a variety of computer vision applications such as object de-
tection, tracking, image stitching and 3D reconstruction. In many
real-world scenarios, the template—a bounding box containing
a region of interest in the source image —undergoes complex
deformations in the target image: the background can change
and the object may undergo nonrigid deformations and partial
occlusions.

Template matching methods have been used with great success
over the years but they still suffer from a number of drawbacks.
Typically, all pixels (or features) within the template and a can-
didate window in the target image are taken into account when
measuring their similarity. This is undesirable in some cases,
for example, when the background behind the object of interest
changes between the template and the target image (see Fig. 1).
In such cases, the dissimilarities between pixels from different
backgrounds may be arbitrary, and accounting for them may lead
to false detections of the template (see Fig. 1(b)).

In addition, many template matching methods assume a spe-
cific parametric deformation model between the template and the
target image (e.g., rigid, affine transformation, etc.). This limits
the type of scenes that can be handled, and may require estimating
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Figure 1: Best-Buddies Similarity (BBS) for Template Match-
ing: (a), The template, marked in green, contains an object
of interest against a background. (b), The object in the target
image undergoes complex deformation (background clutter and
large geometric deformation); the detection results using different
similarity measures are marked on the image (see legend); our
result is marked in blue. (c), The Best-Buddies Pairs (BBPs)
between the template and the detected region are mostly found
the object of interest and not on the background; each BBP is
connected by a line and marked in a unique color.

a large number of parameters when complex deformations are
considered.

In order to address these challenges, we introduce a novel
similarity measure termed Best-Buddies Similarity (BBS), and
show that it can be applied successfully to template matching in
the wild. In order to compute the BBS we first represent both the
template patch and candidate query patches as point sets in Rd.
Then, instead of searching for a parametric deformation between
template and candidate we directly measure the similarity between
these point sets. We analyze key features of BBS, and perform
extensive evaluation of its performance compared to a number of
commonly used alternatives on challenging datasets.

BBS measures the similarity between two sets of points in Rd.
A key feature of this measure is that it relies only on a subset
(usually small) of pairs of points – the Best-Buddies Pairs (BBPs).
A pair of points is considered a BBP if the points are mutual
nearest neighbors, i.e. each point is the nearest neighbor of the
other in the corresponding point set. BBS is then taken to be the
fraction of BBPs out of all the points in the set.

Albeit simple, this measure turns out to have important and
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nontrivial properties. Because BBS counts only the pairs of points
that are best buddies, it is robust to significant amounts of outliers.
Another, less obvious property is that the BBS between two
point sets is maximal when the points are drawn from the same
distribution, and drops sharply as the distance between the distri-
butions increases. In other words, if two points are BBP, they were
likely drawn from the same distribution. We provide a statistical
formulation of this observation, and analyze it numerically in the
1D case for point sets drawn from distinct Gaussian distributions
(often used as a simplified model for natural images).

Modeling image data as distributions, i.e. using histograms,
was successfully applied to many computer vision tasks, due to its
simple yet effective non-parametric representation. A prominent
distance measure between histograms is the Chi-Square (χ2)
distance, in which contributions of different bins, to the similarity
score, are proportional to the overall probability stored in those
bins.

In this work we show that for sufficiently large sets, BBS
converges to the χ2 distance between distributions. However,
unlike χ2 computing BBS is done directly on the raw data
without the need to construct histograms. This is advantageous
as it alleviates the need to choose the histogram bin size. Another
benefit is the ability to work with high dimensional representation,
such as Deep features, for which constructing histograms is not
tractable.

More generally, we show a link between BBS and a well
known statistical measure. This provides additional insight into the
statistical properties of mutual nearest neighbors, and also sheds
light on the ability of BBS to reliably match features coming from
the same distribution, in the presence of outliers.

We apply the BBS measure to template matching by repre-
senting both the template and each of the candidate image regions
as point sets in a joint location-appearance space. To this end,
we use normalized coordinates for location and experiment with
both color as well as Deep features for appearance (although,
BBS is not restricted to these specific choices). BBS is used to
measure the similarity between the two sets of points in these
spaces. The aforementioned properties of BBS now readily apply
to template matching. That is, pixels on the object of interest in
both the template and the candidate patch can be thought of as
originating from the same underlying distribution. These pixels
in the template are likely to find best buddies in the candidate
patch, and hence would be considered as inliers. In contrast,
pixels that come from different distributions, e.g., pixels from
different backgrounds, are less likely to find best buddies, and
hence would be considered outliers (see Fig. 1(c)). Given this
important property, BBS bypasses the need to explicitly model the
underlying object appearance and deformation.

To summarize, the main contributions of this paper are: (a)
introducing BBS – a useful, robust, parameter-free measure for
template matching in unconstrained environments, (b) analysis
providing theoretical justification of its key features and linking
BBS with the Chi-Square distance, and (c) extensive evaluation on
challenging real data, using different feature representations, and
comparing BBS to a number of commonly used template matching
methods. A preliminary version of this paper appeared in CVPR
2015 [1].

2 RELATED WORK

Template matching algorithms depend heavily on the similarity
measure used to match the template and a candidate window in

Signal P Signal Q

Figure 2: Best-Buddies Pairs (BBPs) between 2D Gaussian
Signals: First row, Signal P consists of “foreground” points
drawn from a normal distribution, N(µ1, σ1), marked in blue;
and “background” points drawn from N(µ2, σ2), marked in red.
Similarly, the points in the second signal Q are drawn from
the same distribution N(µ1, σ1), and a different background
distribution N(µ3, σ3). The color of points is for illustration only,
i.e., BBS does not know which point belongs to which distribution.
Second row, only the BBPs between the two signals which are
mostly found between foreground points.

the target image. Various similarity measures have been used for
this purpose. The most popular are the Sum of Squared Differ-
ences (SSD), Sum of Absolute Differences (SAD) and Normal-
ized Cross-Correlation (NCC), mostly due to their computational
efficiency [2]. Different variants of these measures have been
proposed to deal with illumination changes and noise [3], [4].

Another family of measures is composed of robust error func-
tions such as M-estimators [5], [6] or Hamming-based distance
[7], [8], which are less affected by additive noise and ’salt and
paper’ outliers than cross correlation related methods. However,
all the methods mentioned so far assume a strict rigid geometric
deformation (only translation) between the template and the target
image, as they penalize pixel-wise differences at corresponding
positions in the template and the query region.

A number of methods extended template matching to deal with
parametric transformations (e.g., [9], [10]). Recently, Korman et
al. [11] introduced a template matching algorithm under 2D affine
transformation that guarantees an approximation to the globally
optimal solution. Likewise, Tian and Narasimhan [12] find a glob-
ally optimal estimation of nonrigid image distortions. However,
these methods assume a one-to-one mapping between the template
and the query region for the underlying transformation. Thus, they
are prone to errors in the presence of many outliers, such as those
caused by occlusions and background clutter. Furthermore, these
methods assume a parametric model for the distortion geometry,
which is not required in the case of BBS.

Measuring the similarity between color histograms, known as
Histogram Matching (HM), offers a non-parametric technique for
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dealing with deformations and is commonly used in visual track-
ing [13], [14]. Yet, HM completely disregards geometry, which is a
powerful cue. Further, all pixels are evenly treated. Other tracking
methods have been proposed to deal with cluttered environments
and partial occlusions [15], [16]. But unlike tracking, we are
interested in detection in a single image, which lacks the redundant
temporal information given in videos.

Olson [17] formulated template matching in terms of max-
imum likelihood estimation, where an image is represented in
a 3D location-intensity space. Taking this approach one step
further, Oron et al. [18] use xyRGB space and reduced template
matching to measuring the EMD [19] between two point sets.
Unlike EMD, BBS does not require 1 : 1 matching. It therefore
does not have to account for all the data when matching, making
it more robust to outliers.

The BBS is a bi-directional measure. The importance of such
two-side agreement has been demonstrated by the Bidirectional
similarity (BDS) in [20] for visual summarization. Specifically,
the BDS was used as a similarity measure between two images,
where an image is represented by a set of patches. The BDS sums
over the distances between each patch in one image to its nearest
neighbor in the other image, and vice versa.

In the context of image matching, another widely used measure
is the Hausdorff distance [21]. To deal with occlusions or degra-
dations, Huttenlocher et al. [21] proposed a fractional Hausdorff
distance in which the Kth farthest point is taken instead of the
most farthest one. Yet, this measure highly depends on K that
needs to be tuned. Alternatively, Dubuisson and Jain [22] replace
the max operator with sum, which is similar to the way BDS is
defined.

In contrast, the BBS is based on a count of the BBPs, and
makes only implicit use of their actual distance. Moreover, the
BDS does not distinguish between inliers and outliers. These
proprieties makes the BBS a more robust and reliable measure
as demonstrated by our experiments.

We show a connection between BBS and the Chi-Square (χ2)
distance used as a distance measure between distributions (or
histograms). Chi-Square distance comes from the χ2 test-statistic
[23] where it is used to test the fit between a distribution and
observed frequencies. χ2 was successfully applied to a wide range
of computer vision tasks such as texture and shape classification
[24], [25], local descriptors matching [26], and boundary detec-
tion [27] to name a few.

It is worth mentioning, that the term Best Buddies was used
by Pomeranz et al. [28] in the context of solving jigsaw puzzles.
Specifically, they used a metric similar to ours in order to deter-
mine if a pair of pieces are compatible with each other.

The power of mutual nearest neighbors was previously lever-
aged for tasks such as image matching [29], classification of
images [30] and natural language data [31], clustering [32] and
more. In this work we demonstrate its use for template matching
while providing some new statistical analysis.

3 BEST-BUDDIES SIMILARITY

Our goal is to match a template to a given image, in the presence
of high levels of outliers (i.e., background clutter, occlusions)
and nonrigid deformation of the object of interest. We follow
the traditional sliding window approach and compute the Best-
Buddies Similarity (BBS) between the template and every window
(of the size of the template) in the image. In the following, we give

Figure 3: BBS template matching results. Three toys examples
are shown: (A) cluttered background, (B) occlusions, (C) nonrigid
deformation. The template (first column) is detected in the target
image (second column) using the BBS; the results using BBS are
marked in a blue. The likelihood maps (third column) show well-
localized distinct modes. The BBPs are shown in last column. See
text for more details.

a general definition of BBS and demonstrate its key features via
simple intuitive toy examples. We then statistically analyze these
features in Sec. 4.

General Definition: BBS measures the similarity between two
sets of points P ={pi}NP

i=1 and Q={qi}
NQ

i=1, where pi, qi ∈ Rd.
The BBS is the fraction of Best-Buddies Pairs (BBPs) between the
two sets. Specifically, a pair of points {pi ∈ P, qj ∈ Q} is a BBP
if pi is the nearest neighbor of qj in the set Q, and vice versa.
Formally,

bb(pi, qj , P,Q) =

{
1 NN(pi, Q) = qj ∧ NN(qj , P ) = pi
0 otherwise (1)

where, NN(pi, Q)=argmin
q∈Q

d(pi, q), and d(pi, q) is some dis-

tance measure. The BBS between the point sets P and Q is given
by:

BBS(P,Q) =
1

min{NP , NQ}
·
NP∑
i=1

NQ∑
j=1

bb(pi, qj , P,Q). (2)

The key properties of the BBS are: 1) it relies only on a (usually
small) subset of matches i.e., pairs of points that are BBPs,
whereas the rest are considered as outliers. 2) BBS finds the bi-
directional inliers in the data without any prior knowledge on the
data or its underlying deformation. 3) BBS uses rank, i.e., it counts
the number of BBPs, rather than using the actual distance values.

To understand why these properties are useful, let us consider
a simple 2D case of two point sets P and Q. The set P consist
of 2D points drawn from two different normal distributions,
N(µ1,Σ1), and N(µ2,Σ2). Similarly, the points in Q are drawn
from the same distribution N(µ1,Σ1), and a different distribution
N(µ3,Σ3) (see first row in Fig. 2). The distribution N(µ1,Σ1)
can be treated as a foreground model, whereas N(µ2,Σ2) and
N(µ3,Σ3) are two different background models. As can be seen
in Fig. 2, the BBPs are mostly found between the foreground
points in P and Q. For set P , where the foreground and back-
ground points are well separated, 95% of the BBPs are foreground
points. For set Q, despite the significant overlap between fore-
ground and background, 60% of the BBPs are foreground points.

This example demonstrates the robustness of BBS to high
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Figure 4: The expectation of BBS in the 1D Gaussian case:
Two point sets, P and Q, are generated by sampling points from
N(0, 1), and N(µ, σ), respectively. (a), the approximated expec-
tation of BBS(P,Q) as a function of σ (x-axis), and µ (y-axis).(b)-
(c), the expectation of SSD(P,Q), and SAD(P,Q), respectively. (d),
the expectation of BBS as a function of µ plotted for different σ.

levels of outliers in the data. BBS captures the foreground points
and does not force the background points to match. In doing
so, BBS sidesteps the need to model the background/foreground
parametrically or have a prior knowledge of their underlying
distributions. This shows that a pair of points {p, q} is more likely
to be BBP if p and q are drawn from the same distribution. We
formally prove this general argument for the 1D case in Sec. 4.
With this observations in hand, we continue with the use of BBS
for template matching.

3.1 BBS for Template Matching

To apply BBS to template matching, one needs to convert each
image patch to a point set in Rd. Following [18], we use a
joint spatial-appearance space which was shown to be useful for
template matching. BBS, as formulated in equation (2), can be
computed for any arbitrary feature space and for any distance
measure between point pairs. In this paper we focus on two
specific appearance representations: (i) using color features, and
(ii) using Deep features taken from a pretrained neural net. Using
such Deep features is motivated by recent success in applying
features taken from deep neural nets to different applications [33],
[34]. A detailed description of each of these feature spaces is given
in Section 5.1.

Following the intuition presented in the 2D Gaussian example
(see Fig. 2), the use of BBS for template matching allows us
to overcome several significant challenges such as background
clutter, occlusions, and nonrigid deformation of the object. This
is demonstrated in three synthetic examples shown in Fig. 3. The
templates A and B include the object of interest in a cluttered
background, and under occlusions, respectively. In both cases
the templates are successfully matched to the image despite the
high level of outliers. As can be seen, the BBPs are found only
on the object of interest, and the BBS likelihood maps have a
distinct mode around the true location of the template. In the
third example, the template C is taken to be a bounding box
around the forth duck in the original image, which is removed
from the searched image using inpating techniques. In this case,
BBS matches the template to the fifth duck, which can be seen as
a nonrigid deformed version of the template. Note that the BBS
does not aim to solve the pixel correspondence. In fact, the BBPs
are not necessarily semantically correct (see third row in Fig. 3),
but rather pairs of points that likely originated from the same
distribution. This property, which we next formally analyze, helps
us deal with complex visual and geometric deformations in the
presence of outliers.

4 ANALYSIS

So far, we have empirically demonstrated that the BBS is robust
to outliers, and results in well-localized modes. In what follows,
we give a statistical analysis that justifies these properties, and
explains why using the count of the BBP is a good similarity
measure. Additionally, we show that for sufficiently large sets BBS
converges to the well known Chi-Square. This connection with χ2

provides additional insight into the way BBS handles outliers.

4.1 Expected value of BBS

We begin with a simple mathematical model in 1D, in which an
“image” patch is modeled as a set of points drawn from a general
distribution. Using this model, we derive the expectation of BBS
between two sets of points, drawn from two given distributions
fP (p) and fQ(q), respectively. We then analyze numerically the
case in which fP (p), and fQ(q) are two different normal distribu-
tions. Finally, we relate these results to the multi-dimentional case.
We show that the BBS distinctively captures points that are drawn
from similar distributions. That is, we prove that the likelihood of
a pair of points being BBP, and hence the expectation of the BBS,
is maximal when the points in both sets are drawn from the same
distribution, and drops sharply as the distance between the two
normal distributions increases.

One-dimentional Case: Following Eq. 2, the expectation
BBS(P,Q), over all possible samples of P and Q is given by:

E[BBS(P,Q)] = 1
min{NP ,NQ}

NP∑
i=1

NQ∑
j=1

E[bbi,j(P,Q)],

(3)
where bbi,j(P,Q) is defined in Eq. 1. We continue with comput-
ing the expectation of a pair of points to be BBP, over all possible
samples of P and Q, denoted by EBBP. That is,

EBBP =

∫∫
P,Q

bbi,j(P,Q) Pr{P}Pr{Q}dPdQ, (4)

This is a multivariate integral over all points in P and Q. However,
assuming each point is independent of the others this integral can
be simplified as follows.

Claim:

EBBP =
∞∫∫
−∞

(FQ(p−)+1−FQ(p+))NQ−1·

(FP (q−)+1−FP (q+))NP−1fP (p)fQ(q)dpdq,
(5)

where, FP (x), and FQ(x) denote the CDFs of P and Q, respec-
tively. That is, FP (x) = Pr{p ≤ x}. And, p− = p − d(p, q),
p+ =p+ d(p, q), and q+, q− are similarly defined.

Proof: Due to the independence between the points, the integral
in Eq.4 can be decoupled as follows:

EBBP =∫
p1

· · ·
∫

pNP

∫
q1

· · ·
∫

qNQ

bbi,j(P,Q)
NP∏
k=1

fP (pk)
NQ∏
l=1

fQ(ql)dPdQ

(6)
With abuse of notation, we use dP = dp1 · dp2 · · · dpN , and
dQ = dq1 ·dq2 · · · dqM . Let us consider the function bbi,j(P,Q)
for a given realization of P and Q. By definition, this indicator
function equals 1 when pi and qj are nearest neighbors of each
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other, and zero otherwise. This can be expressed in terms of the
distance between the points as follows:

bbi,j(P,Q) =
NP∏

k 6=i,k=1
I[d(pk, qj) > d(pi, qj)]

NQ∏
l 6=j,l=1

I[d(ql, pi) > d(pi, qj)]

(7)
where I is an indicator function. It follows that for a given value
of pi and qj , the contribution of pk to the integral in Eq. 6 can be
decoupled. Specifically, we define:

Cpk =

∞∫
−∞

I[d(pk, qj) > d(pi, qj)]fP (pk)dpk (8)

Assuming d(p, q) =
√

(p− q)2 = |p − q|, the latter can be
written as:

Cpk =
∞∫
−∞

I[pk<q−j ∨ pk>q
+
j ]fP (pk)dpk (9)

where q−j =qj−d(pi, qj) , q+j =qj+d(pi, qj). Since q−j < q+j , it
can be easily shown that Cpk can be expressed in terms of FP (x),
the CDF of P:

Cpk = FP (q
−
j )+1−FP (q+j ) (10)

The same derivation hold for computing Cql, the contribution of
ql to the integral in Eq. 6, given pi, and qj . That is,

Cql = FQ(p−i )+1−FQ(p+i ) (11)

where p−i , p
+
i are similarly defined and FQ(x) is the CDF of Q.

Note that Cpk and Cql depends only on pi and qj and on the
underlying distributions. Therefore, Eq. 6 results in:

EBBP =
∫∫

pi,qj

dpidqjfP (pi)fQ(qj)
NP∏

k=1,k 6=i
Cpk

NQ∏
l=1,l 6=j

Cql

=
∫∫

pi,qj

dpidqjfP (pi)fQ(qj)Cp
NP−1
k Cq

NQ−1
l

(12)
Substituting the expressions for Cpk and Cql in Eq. 12, and
omitting the subscripts i, j for simplicity, result in Eq. 5, which
completes the proof.

In general, the integral in Eq. 5 does not have a closed form
solution, but it can be solved numerically for selected underlying
distributions. To this end, we proceed with Gaussian distributions,
which are often used as simple statistical models of image patches.
We then use Monte-Carlo integration to approximate EBBP for
discrete choices of parameters µ and σ of Q in the range of [0, 10]
while fixing the distribution of P to have µ = 0, σ = 1. We also
fixed the number of points to NP = NQ = 100. The resulting
approximation for EBBP as a function of the parameters µ, σ is
shown in Fig. 4, on the left. As can be seen, EBBP is the highest
at µ = 0, σ = 1, i.e., when the points are drawn from the same
distribution, and drops rapidly as the the underlying distribution
of Q deviates from N(0, 1).

Note that EBBP does not depends on p and q (because of
the integration, see Eq. 5. Hence, the expected value of the BBS
between the sets (Eq. 3) is given by:

E[BBS(P,Q)] = c · EBBP (13)

where c =
NPNQ

min{NP ,NQ} is constant.

We can compare the BBS to the expectation of SSD, and SAD.
The expectation of the SSD has a closed form solution given by:

E[SSD(P,Q)] =

∞∫∫
−∞

(p−q)2fP (p)fQ(q|k)dpdq = 1+µ2+σ2. (14)

Replacing (p − q)2 with |p − q| results in the expression of the
SAD. In this case, the expected value reduces to the expectation
of the Half-Normal distribution and is given by:

E[SAD(P,Q)] =
1√
2π
σK exp−µ

2/(2σ2) +µ(1− 2fP (−µ/σ)) (15)

Fig. 4(b)-(c) shows the maps of the expected values for
1− SSDn(P,Q), and 1− SADn(P,Q), where SSDn, SADn are
the expectation of SSD and SAD, normalized to the range of [0,1].
As can be seen, the SSD and SAD results in a much wider spread
around their mode. Thus, we have shown that the likelihood of a
pair of points to be a BBP (and hence the expectation of the BBS)
is the highest when P and Q are drawn from the same distribu-
tion and drops sharply as the distance between the distributions
increases. This makes the BBS a robust and distinctive measure
that results in well-localized modes.

Multi-dimensional Case: With the result of the 1D case in hand,
we can bound the expectation of BBS when P and Q are sets of
multi-dimensional points, i.e., pi, qj ∈ Rd.

If the d-dimensions are uncorrelated (i.e., the covariance
matrices are diagonals in the Gaussian case), a sufficient (but not
necessary) condition for a pair of points to be BBP is that the
point would be BBP in each of the dimensions. In this case, the
analysis can be done for each dimension independently similar
to what was done in Eq. 5. The expectation of the BBS in the
multi-dimensional case is then bounded by the product of the
expectations in each of the dimensions. That is,

EBBS ≥
d∏

i=1

Ei
BBS, (16)

where Ei
BBS denote the expectation of BBS in the ith dimension.

This means that the BBS is expected to be more distinctive, i.e.,
to drop faster as d increases. Note that if a pair of points is not
a BBP in one of the dimensions, it does not necessarily imply
that the multi-dimentional pair is not BBP. Thus, this condition is
sufficient but not necessary.

4.2 BBS and Chi-Square
Chi-Square is often used to measure the distance between his-
tograms of two sets of features. For example, in face recognition,
χ2 is used to measure the similarity between local binary patterns
(LBP) of two faces [35], and it achieves superior performance
relative to other distance measures.

In this section, we will discuss the connection between this
well known statistical distance measure and BBS. Showing that,
for sufficiently large point sets, BBS converges to the χ2 distance.

We assume, as before, that point sets P and Q are drawn i.i.d.
from 1D distribution functions fP (p) and fQ(q) respectively. We
begin by considering the following lemma:

Lemma 1. Given a point pi = p in P , let Pr[bb(pi = p;P,Q)]
be the probability that pi has a best buddy in Q. Then we have:

lim
N→+∞

Pr[bb(pi = p;P,Q)] =
fQ(p)

fP (p) + fQ(p)
, (17)

For the proof of the lemma see appendix A. Intuitively, if there
are many points from P in the vicinity of point p, but only few
points from Q, i.e. fP (p) is large but fQ(p) is small. It is then
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Figure 5: Finding a Best-Buddy: We illustrate how the underlying
density functions affect the probability that a point p (bold red
circle) has a best buddy. (a) Points from set P (red circles) are
dense but points from set Q (blue cross) are sparse. Although q
is the nearest neighbor of p in Q, p is not the nearest neighbor of
q in P (p′ is closer). (b) Points from set Q are dense and points
from set P are sparse. In this case, p and q are best buddies, as p
is the closest point to q.

hard to find a best buddy in Q for p, as illustrated in Figure 5(a).
Conversely, if there are few points from P in the vicinity of p
but many points from Q, i.e. fP (p) is small and fQ(p) is large.
In that case, it is easy for p to find a best buddy, as illustrated in
Figure 5(b).

A synthetic experiment illustrating the lemma is shown in
Figure 6. Two Gaussian mixtures, each consisting of two 1D-
Gaussian distributions are used (Figure 6(a)). Sets P and Q are
sampled from these distributions (each set from a different mixture
model). We then empirically calculate the probability that a certain
point pi from set P has a best buddy in set Q for different
set sizes, ranging from 10 to 10000 points, Figure 6(b) . As
the sets size increases, the empirical probability converges to the
analytical value given by Lemma 1, marked by the dashed black
line. Note how the results agree with our intuition. For example,
at p = 0, fP (p) is very large but fQ(p) is almost 0, such that
Pr[bbs(pi;P,Q)] is almost 0. At p = 5, however, fP (p) is very
small and fQ(p) is almost 0, so Pr[bbs(pi;P,Q)] is almost 1.

Lemma 1 assumes the value of the point pi is fixed. However,
we need to consider that pi itself is also sampled from the
distribution fP (p), in which case the probability this point has
a best buddy is:

Pr[bb(pi;P,Q)] =
M∫

p=−M
fP (p) · Pr(pi = p;P,Q)dp. =

M∫
p=−M

fQ(p)fP (p)
fP (p)+fQ(p)dp

(18)
Where we assume both density functions are defined on the closed
interval [−M,M ].

We are now ready to show that BBS converges to Chi-Square,

Theorem 1. Suppose both density functions are defined on a close
interval [−M,M ], non-zero and Lipschitz continuous 1. That is,

1) ∀p, q, fP (p) 6= 0, fQ(q) 6= 0

2) ∃A > 0,∀p, q, h, s.t. |fP (p+h)−fP (p)| < A|h| and
|fQ(q + h)− fQ(q)| < A|h|,

1. Note that most of density functions, like the density function of a
Gaussian distribution, are non-zero and Lipschitz continuous in their domain.

then we have,

lim
N→+∞

E[BBS(P,Q)] =
M∫

p=−M

fP (p)fQ(p)
fP (p)+fQ(p)dp

= 1
2 −

1
4χ

2(fp, fq),

(19)

where χ2(fp, fq) is the Chi-Square distance between two distri-
butions.

To see why this theorem holds, consider the BBS measure
between two sets, P and Q. When the two sets have the same
size, the BBS measure equals to the fraction of points in P that
have a best buddy, that is BBS(P,Q) = 1

N

∑N
i=1 bbs(pi;P,Q).

Taking expectation on both sides of the equation, we get:

E[BBS(P,Q)] = 1
N

∑N
i=1E[bbs(pi;P,Q)]

= 1
N ·N · E[bbs(pi;P,Q)]

=
M∫

p=−M

fQ(p)fP (p)
fP (p)+fQ(p)dp.

(20)

Where for the last equality we used lemma 1. This completes the
proof of Theorem 1.

The theorem helps illustrate why BBS is robust to outliers.
To see this, consider the signals in Figure 6(a). As can be
seen fP and fQ are both Gaussian mixtures. Let us assume that
the Gaussian with mean −5 represents the foreground (in both
signals), i.e. µfg = −5, and that the second Gaussian in each
mixture represents the background, i.e. µbg1 = 0 and µbg2 = 5.
Note how, fP (p) is very close to zero around µbg2 and similarly
fQ(q) is very close to zero around µbg1. This means that the
background distributions will make very little contribution to the
χ2 distance, as the numerator fP (p)fQ(q) of Eq. 19 is very close
to 0 in both cases.

We note that using BBS has several advantages compared
to using χ2 . One such advantage is that BBS does not require
binning data into histograms. It is not trivial to set the bin size, as
it depends on the distribution of the features. A second advantage
is the ability to use high dimensional feature spaces. The com-
putational complexity and amount of data needed for generating
histograms quickly explodes when the feature dimension goes
higher. On the contrary, the nearest neighbor algorithm used by
BBS can easily scale to high-dimensional features, like Deep
features.

5 IMPLEMENTATION DETAILS

In this section we provide information on the specific feature
spaces used in our experiments. Additionally, we analyze the
computational complexity of BBS and propose a caching scheme
allowing for more efficient computation.

5.1 Feature Spaces

In order to perform template matching BBS is computed, exhaus-
tively, in a sliding window. A joint spatial-appearance represen-
tation is used in order to convert both template and candidate
windows into point sets. For the spatial component normalized
xy coordinates within the windows are used. For the appearance
descriptor we experiment with both color features as well as Deep
features.
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Figure 6: Illustrating Lemma 1: Point sets P and Q are sampled iid from the two Gaussian mixtures shown in (a). The probability
that a point in set P has a best buddy in set Q is empirically computed for different set sizes (b). When the size of the sets increase,
the empirical probability converges to the analytical solution in Lemma 1 (dashed black line).

Color features: When using color features, we break the template
and candidate windows into k × k distinct patches. Each such
k × k patch is represented by its 3 · k2 color channel values and
xy location of the central pixel, relative to the patch coordinate
system. For our toy examples and qualitative experiments RGB
color space is used. However, for our quantitative evaluation
HSV was used as it was found to produced better results. Both
spatial and appearance channels were normalized to the range
[0, 1] . The point-wise distance measure used with our color
features is:

d(pi, qj) = ||p(A)
i − q(A)

j ||
2
2 + λ||p(L)

i − q(L)
j ||

2
2 (21)

where superscript A denotes a points appearance and superscript
L denotes a points location. The parameter λ = 0.25 was chosen
empirically and was fixed in all of our experiments.

Deep features: For our Deep feature we use features taken
from the VGG-Deep-Net [36]. Specifically, we take features from
two layers of the network, conv1 2 (64 features) and conv3 4
(256 features). The feature maps from conv1 2 are down-sampled
twice, using max-pooling, to reach the size of the conv3 4 which
is down-sampled by a factor of 1/4 with respect to the original
image. In this case we treat every pixel in the down-sampled
feature maps as a point. Each such point is represented by its
xy location in the down-sampled window and its appearance is
given by the 320 feature channels. Prior to computing the point-
wise distances each feature channel is independently normalized
to have zero mean and unit variance over the window. The point-
wise distance in this case is:

d(pi, qj) =< p
(A)
i , q

(A)
j > +exp(−λ||p(L)

i − q(L)
j ||

2
2) (22)

where < ·, · > denotes the inner product operator between feature
vectors. Unlike the color features we now want to maximize
d rather then minimize it (we can always minimize −d). The
parameter λ = 1 was chosen empirically and was fixed in all of
our experiments.

5.2 Complexity

Computing BBS between two point sets P,Q ∈ Rd, requires
computing the distance between each pair of points. That is,
constructing a distance matrix D where [D]i,j =d(pi, qj). Given
D, the nearest neighbor of pi ∈ P , i.e. NN(pi, Q), is the
minimal element in the ith row of D. Similarly, NN(qj , P ) is the
minimal element in the jth column of D. BBS is then computed
by counting the number of mutual nearest neighbors (divided by a
constant).
In this section we analyze the computational complexity of com-
puting BBS exhaustively for every window in a query image. We
then propose a caching scheme, allowing extensive computation
reuse which dramatically reduces the computational complexity,
trading it off with increased memory complexity.

Naive implementation: For our analysis we consider a target
window of size w × h and some query image I of size W ×H .
Both represented using a feature space with d feature channels.
Let us begin by considering each pixel in our target window as a
point in our target point set P and similarly every pixel in some
query window is considered as a point in the query point set Q. In
this case, |P | = |Q| = w · h , l and our distance matrices D are
of size l × l. Assuming some arbitrary image padding, we have
W ·H , L query windows for which BBS has to be computed.
Computing all the L distance matrices requires O(Ll2d). For
each such distance matrix we need to find the minimal element
in every row and column. The minimum computation for a single
row or column is done in O(l) and for the entire matrix in O(l2).
Therefore, the complexity of computing BBS naively for all query
windows of image I is,

O(Ll4d) (23)

This is a high computational load compared to simpler methods
such as sum-of-square-difference (SSD) that require onlyO(Lld).

Distance computation reuse: When carefully examining the
naive scheme above we notice that many pairwise distance com-
putations are performed multiple times. This observation is key to
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Figure 7: BBS results on Real Data: (a), the templates are marked in green over the input images. (b) the target images marked with
the detection results of 6 different methods (see text for more details). BBS results are marked in blue. (c)-(e), the resulting likelihood
maps using BBS, EMD and NCC , respectively; each map is marked with the detection result, i.e., its global maxima.

our proposed caching scheme.
Assuming our sliding window works column by column, the

first distance matrix in the image has to be fully computed. The
second distance matrix, after sliding the query window down
by one pixel, has many overlapping distance computations with
the previously computed matrix. Specifically, we only have to
compute the distances between pixels in the new row added to
the query window and the target window. This means we have to
recompute only w columns of D and not the entire matrix. Taking
this one step further, if we cache all the distance matrices com-
puted along the first image column, then staring from the second
matrix in the second column, we would only have to compute the
distance between one new candidate pixel and the target window,
which means we only have to recompute one column of D which
requires only O(l). Assuming W,H >> w, h the majority of
distance matrices can be computed in O(l), instead of O(l2).
This means that computing BBS for the entire image I would
now require:

O(Ll3f) (24)

Minimum operator load reduction: So far we have shown how
caching can be used to reduce the load of building the distance
matrices. We now show how additional caching can reduce the
computational load of the minimum operator applied to each row
and column of D in order to find the BBP.

As discussed earlier, for the majority of query windows we
only have to recompute one column of D. This means that for
all other l − 1 columns we have already computed the minimum.
Therefore, we actually obtain the minimum over all columns in
just O(l). For the minimum computation along the rows there are
two cases to consider. First, that the minimal value, for a certain
row, was in the column that was pushed out of D. In this case we
would have to find the minimum value for that row, which would
require O(l). The second option is that the minimal value of the
row was not pushed out and we know where it is from previous
computations. In such a case we only have to compare the new

element added to the row (by the new column introduced into D)
relative to the previous minimum value, this operation requires
O(1). Assuming the position of the minimal value along a row
is uniformly distributed, on average, there will be only one row
where the minimum value needs to be recomputed. To see this
consider a set of random variables {Xi}li=1 such that Xi = 1 if
and only if the minimal value in the i’th row of D was pushed
out of the matrix when a new column was introduced. Assuming
a uniform distribution Xi ∼ Bernoulli(1/l). The number of
rows for which the minimum has to be recomputed is given by
m =

∑l
i=1Xi, and the expected number of such rows is,

E[m] = E

[
l∑

i=1

Xi

]
=

l∑
i=1

E[Xi] =
l∑

i=1

1

l
= 1 (25)

This means, that on average, there will be only one row for which
the minimum has to be computed in O(l) time (for other rows
only O(1) is required). Therefore, on average, we are able to find
the minimum of all rows and columns in D, in O(l) instead on
O(l2). By combining the efficient minimum computation scheme,
along with the reuse of distance computations for building D, we
reduce the overall BBS complexity over the entire image to,

O(Ll2d) (26)

Additional load reduction: When using color features, we note
that the actual complexity of computing BBS for the entire image
I is even lower due to the use of non-overlapping k × k patches
instead of individual pixels. This means that both image and target
windows are sampled on a grid with spacing k which in turn leads
to an overall complexity of:

O

(
Ll2d

k4

)
(27)

We note that the reuse schemes presented above cannot be used
with our Deep features due to the fact that we normalize the
features differently, with respect to each query window. Also the
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above analysis does not consider the complexity of extracting the
Deep features themselves.

6 RESULTS

We perform qualitative as well as extensive quantitative eval-
uation of our method on real world data. We compare BBS
with several measures commonly used for template matching. 1)
Sum-of-Square-Difference (SSD), 2) Sum-of-Absolute-Difference
(SAD), 3) Normalized-Cross-Correlation (NCC), 4) color His-
togram Matching (HM) using the χ2 distance, 5) Bidirectional
Similarity [20] (BDS) computed in the same appearance-location
space as BBS.

6.1 Qualitative Evaluation
Four template-image pairs taken from the Web are used for qual-
itative evaluation. The templates, which were manually chosen,
and the target images are shown in Figure 1(a)-(b), and in Figure
7. In all examples, the template drastically changes its appearance
due to large geometric deformation, partial occlusions, and change
of background.

Detection results, using color features with RGB color space,
are presented in Figure 1(a)-(b), and in Figure 7(b), and compared
to the above mentioned methods as well as to the Earth Movers
Distance [19] (EMD). The BBS is the only method successfully
matching the template in all these challenging examples. The
confidence maps of BBS, presented in Figure 7(c), show distinct
and well-localized modes compared to other methods2. The BBPs
for the first example are shown in Figure 1(c). As discussed in
Sec. 3, BBS captures the bidirectional inliers, which are mostly
found on the object of interest. Note that the BBPs, as discussed,
are not necessarily true physical corresponding points.

6.2 Quantitative Evaluation
We now turn to the quantitative evaluation. The data for our
experiments was generated from a dataset of 100 annotated video
sequences3 [37], both color and gray-scale. These videos capture
a wide range of challenging scenes in which the objects of
interest are diverse and typically undergo nonrigid deformations,
photometric changes, motion blur, in/out-of-plane rotation, and
occlusions.

Three template matching datasets were randomly sampled
from the annotated videos. Each dataset is comprised of template-
image pairs, where each such pair consists of frames f and f+df ,
where f was randomly chosen. For each dataset a different value
of df was used (25, 50 or 100). The ground-truth annotated
bounding box in frame f is used as the template, while frame
f + df is used as the query image. This random choice of frames
creates a challenging benchmark with a wide baseline in both
time and space (see examples in Figure 9 and Figure 10). For
df = 25, 50 the data sets consist of 270 pairs and for df = 100
there are 254 pairs.

BBS using both color (with HSV color space) and Deep
features was compared with the 5 similarity measures mentioned
above. The ground-truth annotations were used for quantitative
evaluation. Specifically, we measure the accuracy of both the top
match as well as the top k ranked matches, as follows.

2. Our data and code are publicly available at: http://people.csail.mit.edu/
talidekel/Best-BuddiesSimilarity.html

3. https://sites.google.com/site/benchmarkpami/

Accuracy: was measured using the common bounding box
overlap measure: Acc. =

area(Be∩Bg)
area(Be∪Bg)

where Be and Bg are the
estimated and ground truth bounding boxes, respectively. The
ROC curves show the fraction of examples with overlap larger
than a threshold (TH ∈ [0, 1]). Mean average precision (mAP)
is taken as the area-under-curve (AUC). The success rates, of all
methods, were evaluated considering only the global maximum
(best mode) prediction as well as considering the best out of the
top 3 modes (using non-maximum suppression, NMS).

Results for both color feature and Deep features for the dataset
with df = 25 are shown in Figure 8. Overall it can be seen that
BBS outperforms competing methods using both color and Deep
features. Using color features and considering only the top mode
Figure 8(a), BBS outperforms competing methods with a margin
ranging from 4.6% compared to BDS to over 30% compared
to SSD. When considering the top 3 modes, Figure 8(c), the
performance of all methods improves. However, we can clearly
see the dominance of BBS, increasing its margin over competing
methods. BBS reaches mAP of 0.648 (compared to 0.589 with
only the top mode). For example the margin between BBS and
BDS, which is the runner up, increases to 5.9%. The increase in
performance when considering the top 3 modes suggests that there
are cases where BBS is able to produce a mode at the correct target
position however this mode might not be the global maximum of
the entire map.

Some successful template matching examples, along with the
likelihood maps produced by BBS, using the color features, are
shown in Figure 9. Notice how BBS can overcome non-rigid
deformations of the target.

Typical failure cases are presented in Figure 12. Most of
the failure cases using the color features can be attributed to
either illumination variations (c), distracting objects with a similar
appearance to the target (a)-(b), or cases were BBS matches the
background or occluding object rather than the target (d). This
usually happens when the target is heavily occluded or when the
background region in the target window is very large.

Results using our Deep feature and considering only the top
mode are shown in figures Figure 8(b). We note that HM was
not evaluated in this case due to the high dimensionality of the
feature space. We observe that BBS outperforms the second best
methods by only a small margin of 2.4%. Considering the top 3
modes allows BBS to reach mAP of 0.684 increasing its margin
relative to competing methods. For example the margin relative to
the second best method (SSD) is now 5.2%.

Some template matching examples, along with their associated
likelihood maps, using the Deep features, are shown in Figure
10. The Deep features are not sensitive to illumination variations
and can capture both low level information as well as higher
level object semantics. As can be seen the combination of using
Deep features and BBS can deliver superior results due to its
ability to explain non-rigid deformations. Note how when using
the Deep feature, we can correctly match the bike rider in Figure
10(c) for which color features failed (Figure 12(d)). BBS with
Deep features produce very well localized and compact modes
compared to when color features are used.

Some typical failure cases when using the Deep features are
presented in Figure 13. As for the color features, many failure
cases are due to distracting objects with a similar appearance (a)-
(b) or cases were BBS matches the background or occluding object
(d).

http://people.csail.mit.edu/talidekel/Best-Buddies Similarity.html
http://people.csail.mit.edu/talidekel/Best-Buddies Similarity.html
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(c) Color feature, top 3 modes. (d) Deep feature, top 3 modes.

Figure 8: Template matching accuracy: Evaluation of method performance using 270 template-image pairs with df = 25. BBS
outperforms competing methods as can be seen in ROC curves showing fraction of examples with overlap greater than threshold values
in [0,1]. Top: only best mode is considered. Bottom: best out of top 3 modes is taken. Left: Color features. Right: Deep features.
Mean-average-precision (mAP) values taken as area-under-curve are shown in the legend. Best viewed in color.

It is interesting to see that BDS which was the runner up when
color features were used come in last when using Deep features
switching places with SSD which was worst previously and is
now second in line. This also demonstrates the robustness of BBS
which is able to successfully use different features. Additionally,
we see that overall BBS with Deep features outperforms BBS with
color features (a margin of 5.5% with top 3 modes). However, this
performance gain requires a significant increased in computational
load both since the features have to be extracted and also since the
proposed efficient computation scheme cannot be used in this case.
It is interesting to see that BBS with color features is able perform
as well as SSD with Deep features.

Finally, we note that, when using the color features BBS
outperforms HM which uses the χ2 distance. Although BBS
converges to χ2 for large sets there are clear benefits for using
BBS over χ2. Computing BBS does not require modeling the
distributions (i.e. building normalized histograms) and can be
performed on the raw data itself. This alleviates the need to

choose the histogram bin size which is known to be a delicate
issue. Moreover, BBS can be performed on high dimensional data,
such as our Deep features, for which modeling the underlying
distribution is not practical.

The space time baseline: effect on performance was examined
using data-sets with different df values (25, 50, 100). Figure 11
shows mAP of competing methods for different values of df .
Results using color features are shown on the left and using Deep
features on the right. All results were analyzed taking the best out
of the top 3 modes. It can be seen that BBS outperforms competing
methods for the different df values with the only exception being
Deep feature with df = 100 in which case BBS and SSD produce
similar results reaching mAP of 0.6.

7 CONCLUSIONS

We have presented a novel similarity measure between sets of
objects called the Best-Buddies Similarity (BBS). BBS leverages
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(a) (b) (c) (d)

Figure 9: Example results using color features. Top, input images with annotated template marked in green. Middle, target images
and detected bounding boxes (see legend); ground-truth (GT) marked in green (our results in blue). Bottom, BBS likelihood maps. BBS
successfully match the template in all these examples.

(a) (b) (c) (d)

Figure 10: Example results using Deep features. Top, input images with annotated template marked in green. Middle, target images
and detected bounding boxes (see legend); ground-truth (GT) marked in green (our results in blue). Bottom, BBS likelihood maps. BBS
successfully match the template in all these examples.
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Figure 11: Effect of space time baseline: Methods performance evaluated for data sets with different space-time baseline, df = 25, 50
and 100. Left: Color features, Right: Deep features. BBS outperforms competing methods for both feature choices and for all df values.
Best viewed in color.

(a) (b) (c) (d)

Figure 12: Example of failure cases using color features. Top, input images with annotated template marked in green. Bottom, target
images and detected bounding boxes (see legend); ground-truth (GT) marked in green (our results in blue). As can be seen, some
common failure causes are illumination changes, similar distracting targets or locking onto the background.

(a) (b) (c) (d)

Figure 13: Example of failure cases using Deep features. Top, input images with annotated template marked in green. Bottom, target
images and detected bounding boxes (see legend); ground-truth (GT) marked in green (our results in blue). Some common failure
causes are similar distracting targets or locking onto the background.
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statistical properties of mutual nearest neighbors and was shown to
be useful for template matching in the wild. Key features of BBS
were identified and analyzed demonstrating its ability to overcome
several challenges that are common in real life template matching
scenarios. It was also shown, that for sufficiently large point sets,
BBS converges to the Chi-Square distance. This result provides
interesting insights into the statistical properties of mutual nearest
neighbors, and the advantages of using BBS over χ2 where
discussed.

Extensive qualitative and quantitative experiments on chal-
lenging data were performed and a caching scheme allowing
for an efficient computation of BBS was proposed. BBS was
shown to outperform commonly used template matching methods
such as normalized cross correlation, histogram matching and bi-
directional similarity. Different types of features can be used with
BBS, as was demonstrated in our experiments, where superior
performance was obtained using both color features as well as
Deep features.

Our method may fail when the template is very small com-
pared to the target image, when similar targets are present in the
scene or when the outliers (occluding object or background clutter)
cover most of the template. In some of these cases it was shown
that BBS can predict the correct position (produce a mode) but
non necessarily give it the highest score.

Finally, we note that since BBS is generally defined between
sets of objects it might have additional applications in computer-
vision or other fields that could benefit from its properties. A
natural future direction of research is to explore the use of BBS
as an image similarity measure, for object localization or even for
document matching.

APPENDIX A
PROOF OF LEMMA 1
Because of independent sampling, all points in Q have equal proba-
bility being the best buddy of p. From this we have:

Pr[bb(pi = p;P,Q)] =

=
∑N
i=1 Pr(bb(p, qi;P,Q) = 1)

= N · Pr(bb(p, q;P,Q)),
(28)

where q is a point from Q and subscript is dropped for ease of
description.

The probability that two points are best buddies is given by:

Pr(bb(pi = p, q;P,Q)) =
(FQ(p

−)+1−FQ(p+))N−1(FP (q
−)+1−FP (q+))N−1.

(29)

where FP (x) and FQ(x) denote CDFs of these two distributions, that
is, FP (x) = Pr{p ≤ x}. And, p− = p − |p − q|, p+ = p + |p − q|,
and q+, q− are similarly defined. Combining Eq.28 and Eq. 29, the
probability that pi has a best buddy equals to

lim
N→+∞

N
M∫

q=−M
(FQ(p

−)+1−FQ(p+))N−1

·(FP (q−)+1−FP (q+))N−1fQ(q)dq.

(30)

We denote the signed distance between two points by m = p− q.
Intuitively, because the density function are non-zero at any place,
when N goes to infinity, the probability that two points p ∈ P, q ∈ Q
are BBP decreases rapidly as m increases. Therefore, we only need
to consider the case when the distance between p and q is very small.
Formally, for any positive m, changing the integration limits in Eq. 30

from
M∫

p=−M
to
∫ p+m
q=p−m does not change the result (see Claim 2 in the

supplementary material).

Then let us break down FP (·) and FQ(·) in Eq. 30. Given
that the density functions fP (p) and fQ(q) are Lipschitz continuous
(Condition 2 in Theorem 1), we can assume that they take a constant
value in the interval [p−, p+], and [q−, q+]. That is,

fP (p
−) ≈ fP (p+) ≈ fP (p)

fQ(q
−) ≈ fQ(q+) ≈ fQ(q) (31)

And thus, the expression FQ(p+)− FQ(p−) can be approximated as
follows:

FQ(p
+)− FQ(p−) =

=
∫ p+
p− fQ(q)dq ≈ fQ(q) · (p+ − p−) = 2|m| · fQ(p).

(32)

Similarly, Fp(q+) − FP (q−) ≈ 2|m| · fP (q). Note that this approx-
imation can also be obtained using Taylor expansion on Fp(q+) and
Fp(q

−). At last, since p and q are very close to each other, we assume:

fQ(q) ≈ fQ(p). (33)

Plugging all these approximations (Eq. 32 and Eq. 33) to Eq. 30
and replacing q by m, we get:

Eq. 30 =

= lim
N→+∞

N

∫ m

m=−m
(1− 2|m|fQ(p))N−1

· (1− 2|m|fP (p))N−1fQ(p)dq (34)

=fQ(p) lim
N→+∞

N

∫ m

m=−m

(
1− 2(fP (p) + fQ(p))|m|+

4fP (p)fQ(p)m
2
)N−1

dm (35)

=fQ(p) lim
N→+∞

N

∫ m

m=−m

(
1− 2(fP (p) + fQ(p))m

)N−1

dm.

(36)

It is worth mentioning that the approximated equality in Eq. 32 and
Eq. 33 becomes restrict equality when N goes to infinity (for the
proof see Claim 3 in the supplementary material). Also, since the
distance between two points m is very small, the second order term
4fP (p)fQ(p)m

2 in Eq. 35 is negligible and is dropped in Eq. 36 (for
full justification see Claim 4 in the supplementary material).

At last, lim
N→+∞

N
∫m
m=−m(1 − a|m|)N−1dm = 2

a
(see Claim 1

in supplementary material). Thus Eq. 36 equals to:

fQ(p)

fP (p) + fQ(p)
(37)

which completes the proof of Lemma 1.
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