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Gregory W. Wornell1 Antonio Torralba1 William T. Freeman1,2

1Dept. of Electrical Engineering and Computer Science, Massachusetts Institute of Technology 2Google Research

A+BA

an
gu
la
r	p

os
iti
on

A

A+BA

B

(c)	Original	Frame (d)	Color	Magnified (e)	Reconstructed	1D	Video	of	Hidden	Scene

time

(b)	the	hidden	scene	as	you	move	in	a	circle	around	the	wall’s	edge

(a)

Figure 1: We construct a 1-D video of an obscured scene using RGB video taken with a consumer camera. The stylized diagram in (a) shows a typical
scenario: two people—one wearing red and the other blue—are hidden from the camera’s view by a wall. Only the region shaded in yellow is visible to the
camera. To an observer walking around the occluding edge (along the magenta arrow), light from different parts of the hidden scene becomes visible at
different angles (see sequence (b)). Ultimately, this scene information is captured in the intensity and color of light reflected from the corresponding patch of
ground near the corner. Although these subtle irradiance variations are invisible to the naked eye (c), they can be extracted and interpreted from a camera
position from which the entire obscured scene is hidden from view. Image (d) visualizes these subtle variations in the highlighted corner region. We use
temporal frames of these radiance variations on the ground to construct a 1-D video of motion evolution in the hidden scene. Specifically, (e) shows the
trajectories over time that specify the angular position of hidden red and blue subjects illuminated by a diffuse light.

Abstract

We show that walls, and other obstructions with edges,
can be exploited as naturally-occurring “cameras” that
reveal the hidden scenes beyond them. In particular, we
demonstrate methods for using the subtle spatio-temporal
radiance variations that arise on the ground at the base of
a wall’s edge to construct a one-dimensional video of the
hidden scene behind the wall. The resulting technique can be
used for a variety of applications in diverse physical settings.
From standard RGB video recordings, we use edge cameras
to recover 1-D videos that reveal the number and trajectories
of people moving in an occluded scene. We further show
that adjacent wall edges, such as those that arise in the case
of an open doorway, yield a stereo camera from which the
2-D location of hidden, moving objects can be recovered.
We demonstrate our technique in a number of indoor and
outdoor environments involving varied floor surfaces and
illumination conditions.

1. Introduction
The ability to see around obstructions would prove valu-

able in a wide range of applications. As just two examples,
remotely sensing occupants in a room would be valuable in
search and rescue operations, and the ability to detect hidden,
oncoming vehicles and/or pedestrians would be valuable in
collision avoidance systems [2]. Although often not visible
to the naked eye, in many environments, light from obscured
portions of a scene is scattered over many of the observable
surfaces. This reflected light can be used to recover informa-
tion about the hidden scene (see Fig. 1). In this work, we
exploit the vertical edge at the corner of a wall to construct
a “camera” that sees beyond the wall. Since vertical wall
edges are ubiquitous, such cameras can be found in many
environments.

The radiance emanating from the ground in front of a
corner, e.g., at the base of a building, is influenced by many
factors: the albedo, shape, and BRDF of its surface, as
well as the light coming from the full hemisphere above it.
Assuming the ground has a significant diffuse component, a
majority of the reflected light comes from the surroundings
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that are easily seen from the observer’s position next to the
occluding wall (the visible region is shaded in yellow in
Fig. 1(a)). However, emitted and reflected light from behind
the corner, hidden from the observer, also has a small effect
on the ground’s radiance in the form of a subtle gradient of
light encircling the corner; this is not a shadow, but is instead
what is referred to as a penumbra.

The faint penumbra on the ground is caused by the reflec-
tion of an increasing amount of light from the hidden scene.
To illustrate this, imagine standing with your shoulder up
against the building’s wall (refer to the leftmost picture of
Fig. 1(b)). At this position you are unable to see any of the
scene behind the corner. However, as you slowly move away
from the wall, walking along the magenta circle shown in
Fig. 1(a), you see an increasing amount of the scene. Even-
tually, the hidden scene comes fully into view. Similarly,
different points on the ground reflect light integrated from
differently-sized fractions of the hidden scene.

Now imagine someone has entered the hidden portion of
the scene. This person would introduce a small change to
the light coming from an angular slice of the room. From
behind the corner this change would often not be perceptible
to the naked eye. However, it would result in a subtle change
to the penumbra; see Fig. 1(c) and (d). We use these subtle
changes, recorded from standard video cameras, to construct
a 1-D version of how the hidden scene beyond the corner
evolves with time; see Fig. 1(e).

Section 2 summarizes related work that puts the present
contribution in context. Section 3 shows how, using our
proposed methods, it is possible to identify the number and
location of people in a hidden scene. Section 4 shows how
parallax created by a pair of adjacent edges, such as in a
doorway, can be used to triangulate the 2D position of mov-
ing people over time. Experimental results (in the paper and
supplemental material) are shown for a number of indoor
and outdoor environments with varied flooring, including
carpet, tile, hardwood, concrete, and brick.

2. Related Work
In this section we describe previous non-line-of-sight

(NLoS) methods. Previous methods used to see past or
through occluders have ranged from using WiFi signals [1] to
exploiting random specular surfaces [21, 4]. In this summary,
we emphasize a few active and passive approaches that have
previously been used to see past occluders and image hidden
scenes.

Recovery under Active Illumination: Past approaches
to see around corners have largely involved using time-of-
flight (ToF) cameras [14, 20, 10, 6]. These methods involve
using a laser to illuminate a point that is visible to both
the observable and hidden scene, and measuring how long
it takes for the light to return [20, 15]. By measuring the

light’s time of flight, one can infer the distance to objects
in the hidden scene, and by measuring the light’s intensity,
one can often learn about the reflectance and curvature of
the objects [13]. Past work has used ToF methods to infer
the location [7], size and motion [12, 5], and shape [17] of
objects in the hidden scene. These methods have also been
used to count hidden people [19].

ToF cameras work well in estimating the depths of hidden
objects, however, they have some limitations. First, they
require specialized and comparatively expensive detectors
with fine temporal resolution. Second, they are limited in
how much light they can introduce in the scene to support
imaging. Third, they are vulnerable to interference from
ambient outdoor illumination. By contrast, our proposed real-
time passive technique operates in unpredictable indoor and
outdoor environments with inexpensive consumer cameras,
without additional illumination.

In [9] a laser is used to indirectly illuminate an object
behind an occluder. Using a standard camera the authors are
then able to identify the position of the hidden object. Similar
to our proposed work, [9] uses a standard camera; however,
their proposed system has a number of limitations. Namely,
they require controlled conditions where the geometry of the
unknown moving object is rigid, and its shape and material
are either known or can be closely modeled by a single
oriented surface element. In contrast, our method requires
minimal prior information, is completely passive, and has
been shown to work in many natural settings.

Passive Recovery: Other work has previously considered
the possibility of using structures naturally present in the
real world as cameras. Naturally occurring pinholes (such
as windows) or pinspecks have been previously used for
non-line-of-sight imaging [16, 3]. In addition, specular re-
flections off of human eyes have been used to image hidden
scenes [11]. Although these accidental cameras can be used
to reconstruct 2-D images, they require a more specialized
accidental camera scenario than the simple edges we propose
to use in this work.

The technique presented in [18] also detects and visu-
alizes small, often imperceptible, color changes in video.
However, in this work, rather than just visualize these tiny
color changes, we interpret them in order to reconstruct a
video of a hidden scene.

3. Edge Cameras
An edge camera system consists of four components:

the visible and hidden scenes, the occluding edge, and the
ground, which reflects light from both scenes. We refer to
the (ground) plane perpendicular to the occluding edge as
the observation plane. By analyzing subtle variations in the
penumbra at the base of an edge, we are able to deduce a
hidden subject’s pattern of motion.



The reflected light from a surface at point p, with normal
n̂, is a function of the incoming light L′i as well as the
surface’s albedo a and BRDF β. Specifically,

L′o(p, v̂o) = a(p)

∫
L′i(p, v̂i)β(v̂i, v̂o, n̂) γ(v̂i, n̂) dv̂i,

(1)

where v̂i and v̂o denote the incoming and outgoing unit
vectors of light at position p = (r, θ), respectively, and
γ(v̂i, n̂) = v̂i · n̂. We parameterize p in polar coordinates,
with the origin centered at the occluding edge and θ =
0 corresponding to the angle parallel to the wall coming
from the corner (refer to Fig. 2). For simplicity, we assume
the observation plane is Lambertian, and that the visible
and hidden scene are modeled as light emitted from a large
celestial sphere, parameterized by right ascension α and
declination δ. Under these assumptions, we simplify (1):

L′o(r, θ) = a(r, θ)

∫ 2π

α=0

∫ π/2

δ=0

Li(α, δ) dα dδ (2)

where Li = L′iγ. Furthermore, since the occluding edge
blocks light from [π + θ, 2π] at the radial line θ,

L′o(r, θ) = a(r, θ)

[
Lv +

∫ θ

φ=0

Lh(φ) dφ

]
(3)

for Lv =
∫ π
α=0

∫ π/2
δ=0

Li(α, δ) dα dδ and Lh(φ) =
∫ π/2
δ=0

Li(π +

φ, δ) dδ. By inspecting (3) we can see that the intensity
of light on the penumbra is explained by a constant term,
Lv, which is the contribution due to light visible to the
observer (shaded in yellow in Fig. 1(a)), and a varying angle
dependent term which integrates the light in the hidden scene,
Lh. For instance, a radial line at θ = 0 only integrates the
light from the scene visible to the observer, while the radial
line θ = π/2 reflects the integral of light over the entire
visible and hidden scenes.

Then, if we assume that d
dθa(r, θ) ≈ 01, the derivative of

the observed penumbra recovers the 1-D angular projection
of the hidden scene:

d

dθ
L′o(r, θ) ≈ a(r, θ)Lh(θ). (4)

But what happens if someone walks into the hidden scene
at time t, changing L0

h(θ) to Lth(θ)? In this case, the spatial
derivative of the temporal difference encodes the angular
change in lighting:

d

dθ

[
L′to (r, θ)− L′0o (r, θ)

]
= a(r, θ)

[
Lth(θ)− L0

h(θ)
]
(5)

1In practice, we subtract a background frame to substantially remove
per-pixel albedo variations. Refer to Section 3.1.1
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Figure 2: In (a), the transfer matrix, A, is shown for a toy situation
in which observations lie along circles around the edge. In this case, A
would simply be a repeated lower triangular matrix. (b) contains an example
estimation gain image, which describes the matrix operation performed on
observations y(t) to estimate x(t). As predicted, the image indicates that
we are essentially performing an angular derivative in recovering a frame of
the 1-D video.

In other words, the angular derivative of the penumbra’s dif-
ference from the reference frame is a signal that indicates the
angular change in the hidden scene over time. In practice, we
obtain good results assuming a(r, θ) = 1 and using the cam-
eras’ native encoded intensity values while subtracting the
temporal mean as a background frame (see Section 3.1.1).

3.1. Method

Using a video recording of the observation plane, we
generate a 1-D video indicating the changes in a hidden
scene over time. These 1-D angular projections of the hidden
scene, viewed over many time-steps, reveal the trajectory of
a moving object behind the occluding edge.

Likelihood: At each time t, we relate the observed M -
pixels on the projection plane, y(t), to the 1-D angular pro-
jection of the hidden scene, L(t)

h (θ). We formulate a discrete
approximation to our edge camera system by describing the
continuous image L(t)

h (θ) using N terms, x(t). The obser-
vations y(t) then relate to the unknown parameters x(t) and
L
(t)
v by a linear matrix operation:

y(t) = L(t)
v + Ax(t) + w(t), w(t) ∼ N (0, λ2I),

where the M ×N matrix A is defined by the geometry of
the system. More explicitly, each row m of A integrates
the portion of the hidden scene visible from observation m,
y
(t)
m . In the simplified case of observations that lie on a circle

around the occluding edge, A would simply be a constant
lower-triangular matrix; see Fig. 2(a).

Let Ã be the column augmented matrix [1 A]. We can
then express the likelihood of an observation given x(t) and
L
(t)
v as:

p(y(t)|x(t), L(t)
v ) = N

(
Ã
[
L(t)
v x(t)T

]T
, λ21

)
. (6)



Prior: The signal we are trying to extract is very small
relative to the total light intensity on the observation plane.
Therefore, to improve the quality of results, we enforce spa-
tial smoothness of x(t). We use a simple L2 smoothness
regularization over adjacent parameters in x(t). This corre-
sponds, for a gradient matrix G, to using the prior

p(x(t)) ∝
N−1∏
n=1

exp

[
− 1

2σ2
1

‖x(t)[n]− x(t)[n− 1]‖22
]

N∏
n=1

exp

[
− 1

2σ2
2

‖x(t)[n]‖22
]

(7)

= N (0, σ2
1(GTG)−1 + σ2

21). (8)

Inference: We seek a maximum a posteriori (MAP) es-
timate of the hidden image coefficients, x(t), given M ob-
servations, y(t), measured by the camera. By combining
the defined Gaussian likelihood and prior distributions, we
obtain a Gaussian posterior distribution of x(t) and L(t)

v ,

p(x(t), L(t)
v |y(t)) = N

([
L̂(t)
v x̂(t)T

]T
,Σ(t)

)

Σ(t) =

[
λ−2ÃT Ã +

(
0 0

0 GTG
σ2
1

+ 1
σ2
2

)]−1
[
L̂(t)
v x̂(t)T

]T
= Σ(t)λ−2ÃTy(t) (9)

where the maximum a posteriori estimate is given by x̂(t).
To better understand the operation that is being performed

to obtain the 1-D reconstruction, we visualize each row
of the matrix Σ(t)λ−2ÃT . We refer to each reshaped row
of this matrix as the estimation gain image. An example
estimation gain image is shown in Fig. 2b. As expected, the
matrix operation is computing an angular derivative over the
observation plane. Note that although earlier we assumed
d
dθa(r, θ) ≈ 0, in reality the albedo simply needs to be
orthogonal to the zero-mean pie-wedges in each estimation
gain image. We expect violations from this assumption to be
small.

3.1.1 Implementation Details

Rectification: All of our analysis thus far has assumed
we are observing the floor parallel to the occluding edge.
However, in most situations, the camera will be observing
the projection plane at an angle. In order to make the con-
struction of the matrix A easier, we begin by rectifying our
images using a homography. In these results, we assume the
ground is perpendicular to the occluding edge, and estimate
the homography using either a calibration grid or regular
patterns, such as tiles, that naturally appear on the ground.
Alternatively, a known camera calibration could be used.

Background Subtraction: Since we are interested in
identifying temporal differences in a hidden scene due to a
moving subject, we must remove the effect of the scene’s
background illumination. Although this could be accom-
plished by first subtracting a background frame, L0

o, taken
without the subject, we avoid requiring the availability of
such a frame. Instead, we assume the subject’s motion is
roughly uniform over the video, and use the video’s mean
image in lieu of a true background frame. We found that in
sequences containing people moving naturally, background
subtraction using the average video frame worked well.
Temporal Smoothness: In addition to spatial smoothness
we could also impose temporal smoothness on our MAP es-
timate. x̂(t). This helps to further regularize our result, at
the cost of some temporal blurring. However, to empha-
size the coherence among results, we do not impose this
additional constraint. Each 1-D image, x(t), that we show
is independently computed. Results obtained with tempo-
ral smoothness constraints are shown in the supplemental
material.
Parameter Selection: The noise parameter λ2 is set for
each video as the median variance of estimated sensor noise.
The regularization parameters σ1 and σ2 are empirically set
to 0.1 for all results.

3.2. Experiments and Results

Our algorithm reconstructs a 1-D video of a hidden scene
from behind an occluding edge, allowing users to track the
motions of obscured, moving objects. In all results shown,
the subject was not visible to an observer at the camera.

We present results as space-time images. These images
contain curves that indicate the angular trajectories of mov-
ing people. All results, unless specified otherwise, were
generated from standard, compressed video taken with a
SLR camera. Please refer to the supplemental video for full
sequences and additional results.

3.2.1 Environments

We show several applications of our algorithm in various
indoor and outdoor environments. For each environment, we
show the reconstructions obtained when one or two people
were moving in the hidden scene.

Indoor: In Fig. 1(e) we show a result obtained from a
video recorded in a mostly dark room. A large diffuse light
illuminated two hidden subjects wearing red and blue cloth-
ing. As the subjects walked around the room, their clothing
reflected light, allowing us to reconstruct a 1-D video of col-
ored trajectories. As correctly reflected in our reconstructed
video, the subject in blue occludes the subject in red three
times before the subject in red becomes the occluder.

Fig. 3 shows additional examples of 1-D videos recovered
from indoor edge cameras. In these sequences, the environ-
ment was well-lit. The subjects occluded the bright ambient
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Figure 3: One-dimensional reconstructed videos of indoor, hidden scenes. Results are shown as space-time images for sequences where one or two people
were walking behind the corner. In these reconstructions, the angular position of a person, as well as the number of people, can be clearly identified. Bright
vertical line artifacts are caused by additional shadows appearing on the penumbra. We believe horizontal line artifacts result from sampling on a square grid.
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Figure 4: 1-D reconstructed videos of a common outdoor, hidden scene under various weather conditions. Results are shown as space-time images. The last
row shows results from sequences taken while it was beginning to rain. Although artifacts appear due to the appearing raindrops, motion trajectories can be
identified in all reconstructions.

light, resulting in the reconstruction’s dark trajectory. Note
that in all the reconstructions, it is possible to count the num-
ber of people in the hidden scene, and to recover important
information such as their angular position and speed, and the
characteristics of their motion.

Outdoor: In Fig. 4 we show the results of a number of
videos taken at a common outdoor location, but in differ-
ent weather conditions. The top sequences were recorded
during a sunny day, while the bottom two sequences were
recorded while it was cloudy. Additionally, in the bottom se-
quence, raindrops appeared on the ground during recording,
while in the middle sequence the ground was fully saturated
with water. Although the raindrops cause artifacts in the
reconstructed space-time images, you can still discern the
trajectory of people hidden behind the wall.

3.2.2 Video Quality:

In all experiments shown thus far we have used standard,
compressed video captured using a consumer camera. How-
ever, video compression can create large, correlated noise
that may affect our signal. We have explored the effect video
quality has on results. To do this, we filmed a common
scene using 3 different cameras: an iPhone 5s, a Sony Alpha
7s, and a uncompressed RGB Point Grey. Fig. 5 shows the
results of this experiment assuming different levels of i.i.d.
noise. Each resulting 1-D image was reconstructed from a

single frame. The cell phone camera’s compressed videos
resulted in the noisiest reconstructions, but even those results
still capture key features of the subject’s path.

3.2.3 Velocity Estimation

The derivative of a person’s trajectory over time, θ(t), in-
dicates their angular velocity. Fig. 6 shows an example of
the estimated angular velocity obtained from a single edge
camera when the hidden subject was walking roughly in a
circle. Note that the person’s angular size and speed are both
larger when the person is closer to the corner. Such cues can
help approximate the subject’s 2-D position over time.

3.3. Estimated Signal Strength

In all of our presented reconstructions we show images
with an intensity range of 0.1. As these results were obtained
from 8-bit videos, our target signal is less than 0.1% of the
video’s original pixel intensities.

To better understand the signal measurement require-
ments, we have developed a simple model of the edge cam-
era system that both explains experimental performance and
enables the study of asymptotic limits.

We consider three sources of emitted or reflected light: a
cylinder (proxying for a person), a hemisphere of ambient
light (the surrounding scene), and an infinitely tall half-plane
(the occluding wall). If all surfaces are Lambertian, the
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Figure 5: The result of using different cameras on the reconstruction of the same sequence in an indoor setting. Three different 8-bit cameras (an iPhone 5s,
a Sony Alpha 7s, and an uncompressed RGB Point Grey) simultaneously recorded the carpeted floor. Each camera introduced a different level of sensor
noise. The estimated standard deviation of per-pixel sensor noise, λ, is shown in (b). We compare the quality of two sequences in (c) and (d). In (c), we have
reconstructed a video from a sequence of a single person walking directly away from the corner from 2 to 16 feet at a 45 degree angle from the occluded wall.
This experiment helps to illustrate how signal strength varies with distance from the corner. In (d), we have done a reconstruction of a single person walking
in a random pattern. In (c) the hidden person does not change in angular position. Thus, for these results, we subtract an average background frame computed
from a different portion of the video sequence.
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Figure 6: A subject’s reconstructed angular velocity relative to the corner
as a function of time. In this sequence, a person was walking in circles far
from the corner.

brightness change of the observation plane due the pres-
ence of the cylinder around the corner can be computed
analytically for this simple system. See the supplementary
document.

For reasonable assumed brightnesses of the cylinder,
hemisphere, and half-plane (150, 300, and 100, respectively,
in arbitrary linear units), the brightness change on the ob-
servation plane due to the cylinder will be an extremum of
-1.7 out of a background of 1070 units. This is commensu-
rate with our experimental observations of ∼ 0.1% change
of brightness over the penumbra region. Our model shows
novel asymptotic behavior of the edge camera. Namely, at
large distances from the corner, brightness changes in the
penumbra decrease faster than would otherwise be expected
from a 1-D camera. This is because the arrival angle of the
rays from a distant cylinder are close to grazing with the
ground, lessening their influence on the penumbra. However,
within 10 meters of the corner, such effects are small.

4. Stereo Edge Cameras

Although the width of a track recovered in the method of
the previous section can give some indication of a hidden
person’s relative range, more accurate methods are possible
by exploiting adjacent walls. For example, when a hidden
scene is behind a doorway, the pair of vertical doorway
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Figure 7: The four edges of a doorway contain penumbras that can be used
to reconstruct a 180◦ view of a hidden scene. The top diagram indicates
the penumbras and the corresponding region they describe. Parallax occurs
in the reconstructions from the left and right wall. This can be seen in
the bottom reconstruction of two people hidden behind a doorway. Num-
bers/colors indicate the penumbras used for each 90◦ space-time image.

wall edges yield a pair of corner cameras. By treating the
observation plane at the base of each edge as a camera,
we can obtain stereo 1-D images that we can then use to
triangulate the absolute position of a subject over time.

4.1. Method

A single edge camera allows us to reconstruct a 90◦ angu-
lar image of an occluded scene. We now consider a system
composed of four edge cameras, such as an open doorway,
as illustrated in Fig. 7. Each side of the doorway contains
two adjacent edge cameras, whose reconstructions together
create a 180◦ view of the hidden scene.

The two sides of the doorway provide two views of the
same hidden scene, but from different positions. This causes
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Figure 8: A hidden person will introduce an intensity change on the left
and right wall penumbras at angles of θ(t)

L and θ(t)
R , respectively. Once

these angles have been identified, we can recover the hidden person’s two-
dimensional location using Eq. 11.

an offset in the projected angular position of the same person
(see Fig. 8). Our aim is to use this angular parallax to trian-
gulate the location of a hidden person over time. Assume we
are observing the base of a doorway, with walls of width w
separated by a distanceB. A hidden person will introduce an
intensity change on the left and right wall penumbras at an-
gles of θ(t)L and θ(t)R , respectively. From this correspondence,
we can triangulate their 2-D location.

P (t)
z =

B − η(t)

cot θ
(t)
L + cot θ

(t)
R

(10)

P (t)
x = P (t)

z cot θ
(t)
L (11)

η(t) =


w cot(θR) Px ≤ 0

0 0 ≤ Px ≤ B
w cot(θL) Px ≥ B

(12)

where (Px, Pz) are the x- and z-coordinate of the person.
We define the top corner of the left doorway, corner 1 in
Fig. 7, as (Px, Pz) = (0, 0).

Assuming the wall is sufficiently thin compared to the
depth of moving objects in the hidden scene, the η(t) term
can be ignored. In this case, the relative position of the
person can be reconstructed without any knowledge of the
absolute geometry of the doorway (e.g. B or w). In all
results shown in this paper, we have made this assumption.

Identifying Trajectories: While automatic contour trac-
ing methods exist [8], for simplicity, in our stereo results,
we identify the trajectories of objects in the hidden scene
manually by tracing a path on the reconstructed space-time
images.

4.2. Experiments and Results

We demonstrate the ability of our method to localize
the two-dimensional position of a hidden object using four
edge cameras, such as in a doorway. We present a series
of experiments in both controlled and uncontrolled settings.
Full sequences, indicating the ground truth motions, and
additional results can be found in the supplemental material.
Controlled Environment: To demonstrate the ability to
infer depth from stereo edge cameras we constructed a con-
trolled experiment. A monitor displaying a slowly moving
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Figure 9: The results of our stereo experiments in a natural setting. Each
sequence consists of a single person walking in a roughly circular pattern
behind a doorway. The 2-D inferred locations over time are shown as a line
from blue to red. Error bars indicating one standard deviation of error have
been drawn around a subset of the points. Our inferred depths capture the
hidden subject’s cyclic motion, but are currently subject to large error. A
subset of B’s inferred 2-D locations have been cut out of this figure, but can
be seen in full in the supplemental material.

green line was placed behind two walls, separated by a base-
line of 20 cm, at a distance of roughly 23, 40, 60, and 84
cm. Fig. 10(b) shows sample space-time reconstructions of
each 180◦ edge camera. The depth of the green line was
then estimated from manually identified trajectories obtained
from these space-time images. Empirically estimated error
ellipses are shown in red for a subset of the depth estimates.

Natural Environment: Fig. 9 shows the results of esti-
mating 2-D positions from doorways in natural environments.
The hidden scene consists of a single person walking in a cir-
cular pattern behind the doorway. Although our reconstruc-
tions capture the cyclic nature of the subject’s movements,
they are sensitive to error in the estimated trajectories. Re-
fer to Section 4.3. Ellipses indicating empirically estimated
error have been drawn around a subset of the points.

4.3. Error Analysis

There are multiple sources of error that can introduce
biases into location estimates. Namely, inaccuracy in local-
izing the projected trajectories, and mis-calibration of the
scene cause error in the estimates. We discuss the effects of
some of these errors below. Further derivations and analysis
can be seen in our supplemental material.

Trajectory Localization: Because Pz scales inversely
with cot(θL) + cot(θR), small errors in the estimated pro-
jected angles of the person in the left and right may cause
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Figure 10: Controlled experiments were performed to demonstrate the ability to infer depth from stereo edge cameras. A monitor displaying a moving
green line was placed behind an artificial doorway (a) at four locations corresponding to 23, 40, 60, and 84 cm, respectively. (b) shows sample reconstructions
done of the edge cameras for the left and right wall when the monitor was placed at 23 and 84 cm. Using tracks obtained from these reconstructions, the 2-D
position of the green line in each sequence was estimated over time (c). The inferred position is plotted with empirically computed error ellipses (indicating
one standard deviation of noise).

large errors in the estimated position of the hidden person,
particularly at larger depths. Assuming Gaussian uncertainty
in the left and right angular trajectories, σθL and σθR , the
uncertainty in the estimated position of the hidden person
will not be Gaussian. However, the standard deviation of
empirical distributions through sampling, as seen in Figs. 9
and 10, can be informative. Additionally, by using standard
error propagation of independent variables, we can compute
a first order approximation of the uncertainty. For instance,
the uncertainty in the z position, σPz

, is

σPz
= B

√
σ2
θL

csc4 θL + σ2
θR

csc4 θR

(cot θL + cot θR)4
(13)

-40 -20 0 20 40 60
X Position

0

20

40

60

80

100

Z 
Po

si
tio

n

#
Baseline

Figure 11: The empirical means plus or minus one standard deviation of
the estimated Pz as a function of its x-coordinate, assuming true Pz of 20,
40, 60, and 80. Here, the two corner location errors at each of the boundaries
of the doorway are independent and subject to σ2

∆x = σ2
∆z = 0.04.

Corner Identification: Misidentifying the corner of each
occluding edge will cause systematic error to the estimated
2-D position. To determine how erroneously identifying a
corner affects our results, we consider the following situation:
a doorway of baseline B = 20 obscuring a bright object at
angular position θ in an otherwise dark scene.

Assuming the offset from the true corner location is drawn
from an independent Gaussian distribution, we can calculate
the error between the estimated and true angular position,
and then subsequently use these offsets to calculate the error
in depth. Fig. 11 shows the error as a function of depth for
a stereo camera setup in which the corner offset has been
drawn from a Gaussian distribution with variance 0.04.

5. Conclusion
We show how to turn corners into cameras, exploiting a

common, but overlooked, visual signal. The vertical edge
of a corner’s wall selectively blocks light to let the ground
nearby display an angular integral of light from around the
corner. The resulting penumbras from people and objects
are invisible to the eye – typical contrasts are 0.1% above
background – but are easy to measure using consumer-grade
cameras. We produce 1-D videos of activity around the cor-
ner, measured indoors, outdoors, in both sunlight and shade,
from brick, tile, wood, and asphalt floors. The resulting
1-D videos reveal the number of people moving around the
corner, their angular sizes and speeds, and a temporal sum-
mary of activity. Open doorways, with two vertical edges,
offer stereo views inside a room, viewable even away from
the doorway. Since nearly every corner now offers a 1-D
view around the corner, this opens potential applications for
automotive pedestrian safety, search and rescue, and public
safety. This ever-present, but previously unnoticed, 0.1%
signal may invite other novel camera measurement methods.
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