PUBLICATIONS
Publications by Theme:
Computer vision
-
Shape Recipes: Scene Representations that Refer to the ImageWilliam T. Freeman, Antonio TorralbaNeural Information Processing Systems (NIPS) 2002 -
A World of MovementFredo Durand, William T. Freeman, Michael RubinsteinScientific American, Volume 312, Number 1, January 2015 -
Estimating the Material Properties of Fabric from VideoKatherine L. Bouman, Bei Xiao, Peter Battaglia, William T. Freeman2013 IEEE International Conference on Computer Vision (ICCV) -
Group Norm for Learning Structured SVMs with Unstructured Latent VariablesDaowen Chen, Dhruv Batra, William T. Freeman2013 IEEE International Conference on Computer Vision (ICCV) -
Shape Anchors for Data-Driven Multi-view ReconstructionAndrew Owens, Jianxiong Xiao, Antonio Torralba, William FreemanInternational Conference on Computer Vision (ICCV), 2013 -
Structural modal identification through high speed camera videoJustin G Chen, Neal Wadhwa, Young-Jin Cha, Frédo Durand, William T. Freeman, Oral BuyukozturkTopics in Modal Analysis I, Volume 7, pages 191-197, Springer International Publishing, 2014. -
The Visual Microphone: Passive Recovery of Sound from VideoAbe Davis, Michael Rubinstein, Neal Wadhwa, Gautham Mysore, Fredo Durand, William T. FreemanACM Transactions on Graphics, Volume 33, Number 4 (Proc. SIGGRAPH), 2014. -
Refraction Wiggles for Measuring Fluid Depth and Velocity from VideoTianfan Xue, Michael Rubinstein , Neal Wadhwa , Anat Levin, Frédo Durand, William T. FreemanEuropean Conference on Computer Vision (ECCV), 2014 -
Riesz Pyramids for Fast Phase-Based Video MagnificationNeal Wadhwa, Michael Rubinstein, Frédo Durand, William T. FreemanInternational Conference on Computational Photography (ICCP), 2014. -
Seeing the Arrow of TimeLyndsey Pickup, Zheng Pan, Donglai Wei, Yichang Shih, Andrew Zisserman, William T. Freeman, Bernhard SchoelkopfIEEE Computer Vision and Pattern Recognition (CVPR), 2014 -
A Compositional Model for Low-Dimensional Image Set RepresentationHossein Mobahi, Ce Liu, and William T. FreemanIEEE Computer Vision and Pattern Recognition (CVPR), 2014 -
Camouflaging an Object from Many ViewpointsAndrew Owens, Connelly Barnes, Alex Flint, Hanumant Singh, William T. FreemanIEEE Computer Vision and Pattern Recognition (CVPR), 2014 -
Computer Image Processing of STEM Images of Tobacco Mosaic VirusE. J. Kirkland, W. T. Freeman, M. Ohtsuki, M. S. Isaacson, and B. S. SiegalUltramicroscopy 6, 367-76 (1981) -
Image processing to remove grain from photographsW. T. FreemanSociety of Photographic Scientists and Engineers 42nd Annual Conference, pp. 457 – 460, May, 1989 -
Steerable filtersW. T. Freeman and E. H. AdelsonOSA Topical Meeting on Image Understanding and Machine Vision, Technical Digest Series Volume 14, June, 1989 -
Applications of neural networks in image processingW. T. Freeman, J. G. Chen, and Q. TianAutomation Soc. of China Symp. on Neural Networks, pp. 46 – 55, Beijing, 1989(in Chinese)
-
A neural network for image noise removalJ. G. Chen, Q. Tian, and W. T. Freeman1st National Conference on Neural Networks and their Applications, Beijing, 1990(in Chinese)
-
Pyramids and multiscale representationsE. H. Adelson, E. P. Simoncelli, and W. T. FreemanProc. 13th European Conference on Visual Perception, Paris, 1990 -
Steerable filters for early vision, image analysis, and wavelet decompositionW. T. Freeman and E. H. AdelsonIEEE International Conference on Computer Vision, Osaka, Japan, 1990Helmholtz Prize–test-of-time award winner.
-
Motion without movementW. T. Freeman, E. H. Adelson, and D. J. HeegerACM Computer Graphics, vol. 25, no. 4, (SIGGRAPH ’91), pp. 27 – 30, July, 1991 -
The design and use of steerable filtersW. T. Freeman and E. H. AdelsonIEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 13, no. 9, pp. 891 – 906, September, 1991 -
Shiftable Multi-Scale TransformsE. P. Simoncelli, W. T. Freeman, E. H. Adelson and D. J. HeegerIEEE Trans. Information Theory, Special Issue on Wavelets. Vol. 38, No. 2, pp. 587-607, March 1992 -
Steerable Filters and Local Analysis of Image StructureW. T. FreemanPh.D. Thesis, Massachusetts Institute of Technology, 1992 -
Exploiting the generic view assumption to estimate scene parametersW. T. FreemanIEEE International Conference on Computer Vision, Berlin, Germany, 1993 -
Building and using catalogs of grey-level junctionsE. H. Adelson, P. Sinha, and W. T. FreemanProc. 15th European Conference on Visual Perception, Edinburgh, Scotland. August, 1993 -
Bayesian method for recovering surface and illuminant properties from photosensor responsesD. H. Brainard and W. T. FreemanHuman Vision, Visual Processing and Digital Display V, SPIE Proceedings Series, vol. 2179, 1994 -
The generic viewpoint assumption in a framework for visual perceptionW. T. FreemanNature, vol. 368, p. 542 – 545, April 7, 1994 -
Computer vision for computer graphicsI. Carlbom (course organizer) and W. Freeman, G. Klinker, W. Lorensen, R. Szeliski, D. Terzopoulos, and K. WatersSIGGRAPH ’94 and ’95 course notes -
Demonstration of an interactive environment for collaboration and learningC. Rich, R. C. Waters, C. Strohecker, Y. Schabes, W. T. Freeman, M. C. Torrance, A. R. Golding, and M. RothIEEE Computer, Vol. 27, No. 12, Dec. 1994 -
Orientation histograms for hand gesture recognitionW. T. Freeman and M. RothInternational Workshop on Automatic Face- and Gesture- Recognition, IEEE Computer Society, Zurich, Switzerland, June, 1995, pp. 296-301Winner, 2013 Test-of-time award from Face and Gesture Recognition conference. Here is a video prepared to accept the test-of-time award, describing the work in its context, in .mov format, or in .mpeg format.
-
Television control by hand gesturesW. T. Freeman and C. WeissmanInternational Workshop on Automatic Face- and Gesture- Recognition, IEEE Computer Society, Zurich, Switzerland, June, 1995, pp. 179-183 -
Bayesian decision theory, the maximum local mass estimate, and color constancyW. T. Freeman and D. H. BrainardFifth International Conference on Computer Vision, IEEE Computer Society, Cambridge, MA, U.S.A, June, 1995, pp. 210 – 217 -
The steerable pyramid: a flexible architecture for multi-scale derivative computationE. P. Simoncelli and W. T. Freeman2nd Annual IEEE International Conference on Image Processing, Washington, DC. October, 1995 -
Artificial retina chips as image input interfaces for multimedia systemsT. Toyoda, Y. Nitta, E. Funatsu, Y. Miyake, W. Freeman, J. Ohta, and K. KyumaOptoelectronics and Communications Conference, OECC’96, Chiba, Japan, July, 1996 -
A gesture controlled human interface using an artificial retina chipY. Miyake, W. T. Freeman, J. Ohta, K. Tanaka, and K. KyumaIEEE Lasers and Electro-Optics (LEOS ’96), July, 1996 -
Example-based head trackingS. Niyogi and W. T. Freeman2nd International Conference on Automatic Face and Gesture Recognition, Killington, VT, USA. -
Computer vision for computer gamesW. T. Freeman, K. Tanaka, J. Ohta, and K. Kyuma, 2nd International Conference on Automatic Face and Gesture Recognition, Killington, VT, USA, pp. 100-105 -
The generic viewpoint assumption in a Bayesian frameworkW. T. FreemanPerception as Bayesian Inference, D. Knill and W. Richards, eds., Cambridge University Press, 365 – 390, 1996 -
Exploiting the generic viewpoint assumptionW. T. FreemanInternational Journal Computer Vision, 20 (3), 243-261, 1996 -
Separating Style and ContentJ. B. Tenenbaum and W. T. FreemanNeural Information Processing Systems 9, M. C. Mozer, M. I. Jordan and T. Petsche, Eds., Morgan Kaufmann, San Mateo, CA., 1997 -
Learning bilinear models for two-factor problems in visionW. T. Freeman and J. B. TenenbaumIEEE Conference on Computer Vision and Pattern Recognition (CVPR ’97), Puerto Rico, U. S. A., June, 1997Received Outstanding Paper prize, CVPR '97
-
Bayesian Color ConstancyD. H. Brainard and W. T. FreemanJournal of the Optical Society of America, A, 14(7), pp. 1393-1411, July, 1997 -
Bayesian Estimation of 3-D Human MotionMichael E. Leventon, William T. FreemanTech. Rep. TR98-06, Mitsubishi Electric Research Laboratories, Cambridge, MA, July 1998 -
Bayesian model of surface perceptionW. T. Freeman and P. A. ViolaNeural Information Processing Systems, volume 10, pp. 787-793, 1998 -
Computer vision for interactive computer graphicsW. T. Freeman, D. Anderson, P. Beardsley, C. Dodge, H. Kage, K. Kyuma, Y. Miyake, M. Roth, K. Tanaka, C. Weissman, W. YerazunisIEEE Computer Graphics and Applications, volume 18, number 3, May-June, pp. 42-53, 1998 -
A factorization approach to groupingP. Perona and W. T. FreemanProceedings, European Conference on Computer Vision, 1998 -
Separating style and content with bilinear modelsJoshua B. Tenenbaum, William T. FreemanNeural Computation 12(6), pp. 1247-1283, 2000 -
Learning to estimate scenes from imagesWilliam T. Freeman, Egon C. PasztorNeural Information Processing Systems, volume 11, 1999 -
Markov networks for low-level visionWilliam T. Freeman, Egon C. PasztorPresented at Workshop on Statistical and Computational Theories of Vision -
Learning low-level visionWilliam T. Freeman, Egon C. PasztorAppeared in IEEE International Conference on Computer Vision, Corfu, Greece, 1999 -
An Inexpensive, All Solid-state Video and Data Recorder for Accident ReconstructionW. S. Yerazunis, D. L. Leigh, W. T. Freeman, R. S. BardsleyPresented at the 1999 SAE International Congress and Exposition in Detroit, Michigan on March 3, 1999; published as SAE Technical Paper number 1999-10-1299 -
Computer vision for computer interactionW. T. Freeman, P. Beardsley, H. Kage, K. Tanaka, K. Kyuma, C. WeissmanSIGGRAPH Computer Graphics magazine, November, 1999 -
Bayesian Reconstruction of 3D Human Motion from Single-Camera VideoNicholas R. Howe, Michael E. Leventon, William T. FreemanAdvances in Neural Information Processing Systems 12, edited by S. A. Solla, T. K. Leen, and K-R Muller, 2000 -
Artificial retina chips as on-chip image processors and gesture-oriented interfacesH. Kage, W. T. Freeman, Y. Miyake, E. Funatsu, K. Tanaka, K. KyumaOptical Engineering, Vol. 38, No. 12, December, 1999 -
Learning Low-Level VisionW. T. Freeman, E. C. Pasztor, O. T. CarmichaelInternational Journal of Computer Vision, 40(1), pp. 25-47, 2000 -
Markov networks for super-resolutionW. T. Freeman and E. C. PasztorProceedings of 34th Annual Conference on Information Sciences and Systems (CISS 2000), Dept. Electrical Engineering, Princeton University, Princeton, NJ 08544-5263, March, 2000 -
Learning Motion AnalysisW. T. Freeman, J. A. Haddon, and E. C. PasztorStatistical Theories of the Brain, edited by R. Rao, B. Olshausen, and M. Lewicki, MIT Press, 2001 -
Learning Joint Statistical Models for Audio-Visual Fusion and SegregationJ. W. Fisher, T. Darrell, W. T. Freeman and P. ViolaAdvances in Neural Information Processing Systems 13, edited by T. K. Leen, T. G. dietterich, and V. Tresp, pp. 772-778, 2001 -
Example-based super-resolutionWilliam T. Freeman, Thouis R. Jones, and Egon C. PasztorIEEE Computer Graphics and Applications, March/April, 2002.Test-of-time award given in 2023 from IEEE CG&A.
-
Learning local evidence for shading and reflectanceM. Bell and W. T. FreemanInternational Conference on Computer Vision, Vancouver, BC, Canada, 2001 -
Shape-Time PhotographyW. T. Freeman and H. ZhangMIT Artificial Intelligence Lab Memo 2002-002 -
Learning style translation for the lines of a drawingW. T. Freeman, J. B. Tenenbaum, E. PasztorACM Transactions on Graphics, January, 2003 -
Properties and Applications of Shape RecipesA. Torralba and W. T. FreemanIEEE Computer Vision and Pattern Recognition (CVPR), Madison, WI, June, 2003 -
Nonparametric Belief Propagation and Facial Appearance EstimationE. B. Sudderth, A. T. Ihler, W. T. Freeman and A. S. WillskyIEEE Computer Vision and Pattern Recognition (CVPR), Madison, WI, June, 2003 -
Shape-Time PhotographyW. T Freeman and H. ZhangIEEE Computer Vision and Pattern Recognition (CVPR), Madison, WI, June, 2003 -
Context-based vision system for place and object recognitionA. Torralba, K. P. Murphy, W. T. Freeman, and M. A. RubinIEEE Intl. Conference on Computer Vision (ICCV), Nice, France, October, 2003 -
Comparison of graph cuts with belief propagation for stereo, using identical MRF parametersM. F. Tappen and W. T. FreemanIEEE Intl. Conference on Computer Vision (ICCV), Nice, France, October, 2003 -
Exploiting spatial and spectral image regularities for color constancyB. Singh, W. T. Freeman, and D. H. Brainard3rd Intl. Workshop on Statistical and Computational Theories of Vision (associated with Intl. Conf. on Computer Vision), Nice, France, October, 2003 -
Exploiting the sparse derivative prior for super-resolution and image demosaicingM. F. Tappen, B. C. Russell, and W. T. Freeman3rd Intl. Workshop on Statistical and Computational Theories of Vision (associated with Intl. Conf. on Computer Vision), Nice, France, October, 2003 -
Using the forest to see the trees: a graphical model relating features, objects, and scenesK. Murphy, A. Torralba, and W. T. FreemanAdvances in Neural Information Processing Systems 16 (NIPS), Vancouver, BC, MIT Press, 2004 -
Visual Hand Tracking Using Nonparametric Belief PropagationE. Sudderth, M. Mandel, W. Freeman, and A. WillskyWorkshop on Generative Model Based Vision, CVPR, June 2004 -
Efficient graphical models for processing imagesM. F. Tappen, B. C. Russell, and W. T. FreemanIEEE Conf. on Computer Vision and Pattern Recognition (CVPR) Washington, DC, 2004 -
Single-frame Text Super-resolution: A Bayesian ApproachG. Dalley, W. T. Freeman, and J. MarksInternational Conference on Image Processing (ICIP), Oct. 2004 -
Sharing visual features for multiclass and multiview object detectionA. Torralba, K. P. Murphy, and W. T. FreemanIEEE Conf. on Computer Vision and Pattern Recognition (CVPR) Washington, DC, 2004; MIT CSAIL technical report -
Distributed Occlusion Reasoning for Tracking with Nonparametric Belief PropagationPropagation E. Sudderth, M. Mandel, W. Freeman, and A. WillskyNeural Information Processing Systems (NIPS) 2004 -
Contextual Models for Object Detection Using Boosted Random FieldsAntonio Torralba, Kevin P. Murphy, William T. FreemanNeural Information Processing Systems (NIPS), Vancouver, B.C., Dec. 2004 -
Motion MagnificationCe Liu, Antonio Torralba, William Freeman, Fredo Durand, and Edward AdelsonSIGGRAPH 2005 -
Learning Hierarchical Models of Scenes, Objects, and PartsE. Sudderth, A. Torralba, W. Freeman, and A. WillskyInternational Conference on Computer Vision (ICCV), Beijing, China, Oct. 2005 -
An Ensemble Prior of Image Structure for Cross-modal InferenceS. Ravela, A. Torralba, W. T. FreemanInternational Conference on Computer Vision (ICCV), Beijing, China, vol. 1, pp. 871-876, Oct. 2005 -
Discovering Objects and their Location in ImagesJ. Sivic, B. Russell, A. A. Efros, A. Zisserman, W. T. FreemanInternational Conference on Computer Vision (ICCV), Beijing, China, Oct. 2005Received 2017 Helmholtz prize, test-of-time award.
-
Describing Visual Scenes using Transformed DirichletE. Sudderth, A. Torralba, W. Freeman, and A. WillskyNeural Information Processing Systems (NIPS), Vancouver, B.C., Dec. 2005 -
Using multiple segmentations to discover objects and their extent in image collectionsB. C. Russell, , A. Efros, J. Sivic, W. T. Freeman, and A. ZissermanIEEE Conf. on Computer Vision and Pattern Recognition (CVPR) New York, NY, June, 2006 -
Noise estimation from a single imageC. Liu, W. T. Freeman, R. Szeliski, and S. B. KangIEEE Conf. on Computer Vision and Pattern Recognition (CVPR) New York, NY, June, 2006 -
Depth from familiar objects: a hierarchical model for 3d scenesE. Sudderth, A. Torralba, W. T. Freeman, and A. WillskyIEEE Conf. on Computer Vision and Pattern Recognition (CVPR) New York, NY, June, 2006 -
Removing camera shake from a single imageR. Fergus, B. Singh, A. Hertzmann, S. Roweis, and W. T. FreemanSIGGRAPH 2006 -
LabelMe: a database and web-based tool for image annotationB. Russell, A. Torralba, K. Murphy, W. T. FreemanMIT AI Lab Memo AIM-2005-025, September, 2005 -
Shared features for multiclass object detectionA. Torralba, K. Murphy, W. T. FreemanTowards Category-Level Object Recognition. Springer Lecture Notes in Computer Science (invited submission). 2005 -
Recovering Intrinsic Images from a Single ImageM. F. Tappen, W. T. Freeman, and E. H. AdelsonIEEE Transactions on Pattern Analysis and Machine Intelligence, Volume 27, Issue 9, September 2005, Pages 1459 – 1472 -
Object detection and localization using local and global featuresK. Murphy, A. Torralba, D. Eaton, W. T. FreemanLecture Notes in Computer Science (unrefeered). Sicily workshop on object recognition, 2005 -
Bayesian model of human color constancyD. H. Brainard, P. Longere, P. B. Delahunt, W. T. Freeman, J. M. Kraft, and B. XiaoJournal of Vision, 6, 1267-1281, doi:10.1167/6.11.10. 2006 -
Analysis of contour motionsC. Liu, W. T. Freeman and E. H. AdelsonAdvances in Neural Information Processing Systems (NIPS 2006)Received Outstanding Student Paper Award
-
Sharing visual features for multiclass and multiview object detectionA. Torralba, K. P. Murphy, and W. T. FreemanIEEE Transactions on Pattern Analysis and Machine Intelligence , vol. 29, no. 5, pp. 854-869, May, 2007 -
Image and depth from a conventional camera with a coded apertureA. Levin, R. Fergus, F. Durand, and W. T. FreemanACM Trans. On Graphics (Proc. SIGGRAPH) 2007 -
Face Hallucination: theory and practiceC. Liu, H. Y. Shum and W. T. FreemanInternational Journal of Computer Vision, Vol. 75, no. 1, pp. 115-134, October, 2007 -
What makes a good model of natural images?Y. Weiss and W. T. FreemanIEEE Computer Vision and Pattern Recognition (CVPR) 2007 -
Exploring defocus matting: non-parametric acceleration, super-resolution, and off-center mattingN. Joshi, W. Matusik, S. Avidan, H. Pfister, and W. T. FreemanIEEE Computer Graphics and Applications, special issue on Computational Photography, March, 2007 -
A reliable skin mole localization schemeTaeg Sang Cho, William T. Freeman, Hensin Tsao2007 IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA), in conjunction with 2007 ICCV -
Estimating Intrinsic Component Images using Non-Linear RegressionM. Tappen, E. Adelson, and W. T. FreemanIEEE Conf. on Computer Vision and Pattern Recognition (CVPR) New York, NY, June, 2006 -
Learning Gaussian Conditional Random Fields for Low-Level VisionM. F. Tappen, C. Liu, W. T. Freeman, and E. H. AdelsonIEEE Computer Vision and Pattern Recognition (CVPR) 2007 -
Signal and Image Processing with Belief PropagationE. Sudderth and W. T. FreemanDSP Application Column, IEEE Signal Processing Magazine, Mar. 2008