Machine learning


  • FeatUp: A Model-Agnostic Framework for Features at Any Resolution
    Stephanie Fu, Mark Hamilton, Laura Brandt, Axel Feldman, Zhoutong Zhang, William T. Freeman
    International Conference on Learning Representations (ICLR) 2024

  • Diffusion with forward models: Solving stochastic inverse problems without direct supervision
    Ayush Tewari, Tianwei Yin, George Cazenavette, Semon Rezchikov, Josh Tenenbaum, Frédo Durand, Bill Freeman, Vincent Sitzmann
    Advances in Neural Information Processing Systems 2023

  • Separating the” Chirp” from the” Chat”: Self-supervised Visual Grounding of Sound and Language
    Mark Hamilton, Andrew Zisserman, John R Hershey, William T Freeman
    IEEE/CVF Conference on Computer Vision and Pattern Recognition 2024

  • Alchemist: Parametric control of material properties with diffusion models
    Prafull Sharma, Varun Jampani, Yuanzhen Li, Xuhui Jia, Dmitry Lagun, Fredo Durand, Bill Freeman, Mark Matthews
    IEEE/CVF Conference on Computer Vision and Pattern Recognition 2024

  • One-step diffusion with distribution matching distillation
    Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shechtman, Fredo Durand, William T Freeman, Taesung Park
    IEEE/CVF Conference on Computer Vision and Pattern Recognition 2024

  • Muse: Text-To-Image Generation via Masked Generative Transformers
    Huiwen Chang, Han Zhang, Jarred Barber, Aaron Maschinot, Jose Lezama, Lu Jiang, Ming-Hsuan Yang, Kevin Patrick Murphy, William T. Freeman, Michael Rubinstein, Yuanzhen Li, Dilip Krishnan
    International Conference on Machine Learning 2023

  • Associating objects and their effects in video through coordination games
    Erika Lu, Forrester Cole, Weidi Xie, Tali Dekel, Bill Freeman, Andrew Zisserman, Michael Rubinstein
    Advances in Neural Information Processing Systems 2022

  • 3d motion magnification: Visualizing subtle motions from time-varying radiance fields
    Brandon Y Feng, Hadi Alzayer, Michael Rubinstein, William T Freeman, Jia-Bin Huang
    IEEE/CVF International Conference on Computer Vision 2023

  • Score-based diffusion models as principled priors for inverse imaging
    Berthy T Feng, Jamie Smith, Michael Rubinstein, Huiwen Chang, Katherine L Bouman, William T Freeman
    IEEE/CVF International Conference on Computer Vision 2023

  • Unsupervised semantic segmentation by distilling feature correspondences
    Mark Hamilton, Zhoutong Zhang, Bharath Hariharan, Noah Snavely, William T Freeman
    International Conference on Learning Representations (ICLR) 2022

  • Axiomatic Explanations for Visual Search, Retrieval, and Similarity Learning
    Mark Hamilton, Scott Lundberg, Lei Zhang, Stephanie Fu, William T Freeman
    International Conference on Learning Representations (ICLR) 2022

  • What you can learn by staring at a blank wall
    Prafull Sharma, Miika Aittala, Yoav Y Schechner, Antonio Torralba, Gregory W Wornell, William T Freeman, Frédo Durand
    International Conference on Computer Vision (ICCV) 2021

  • Large-scale intelligent microservices
    Mark Hamilton, Nick Gonsalves, Christina Lee, Anand Raman, Brendan Walsh, Siddhartha Prasad, Dalitso Banda, Lucy Zhang, Lei Zhang, William T Freeman
    IEEE International Conference on Big Data (Big Data) 2020

  • Multi-plane program induction with 3d box priors
    Yikai Li, Jiayuan Mao, Xiuming Zhang, Bill Freeman, Josh Tenenbaum, Noah Snavely, Jiajun Wu
    Advances in Neural Information Processing Systems (NeurIPS) 2020

  • Weakly Supervised 3D Human Pose and Shape Reconstruction with Normalizing Flows
    Andrei Zanfir, Eduard Gabriel Bazavan, Hongyi Xu, Bill Freeman, Rahul Sukthankar, Cristian Sminchisescu
    European Conference on Computer Vision (ECCV), 2020

  • GHUM & GHUML: Generative 3D Human Shape and Articulated Pose Models
    Hongyi Xu, Eduard Gabriel Bazavan, Andrei Zanfir, William T Freeman, Rahul Sukthankar, Cristian Sminchisescu
    Conference on Computer Vision and Pattern Recognition (CVPR), 2020

  • Perspective Plane Program Induction From a Single Image
    Yikai Li, Jiayuan Mao, Xiuming Zhang, William T Freeman, Joshua B Tenenbaum, Jiajun Wu
    Computer Vision and Pattern Recognition(CVPR), 2020

  • SpeedNet: Learning the Speediness in Videos
    Sagie Benaim, Ariel Ephrat, Oran Lang, Inbar Mosseri, William T Freeman, Michael Rubinstein, Michal Irani, Tali Dekel
    Conference on Computer Vision and Pattern Recognition (CVPR), 2020

  • Semantic Pyramid for Image Generation
    Assaf Shocher, Yossi Gandelsman, Inbar Mosseri, Michal Yarom, Michal Irani, William T Freeman, Tali Dekel
    Computer Vision and Pattern Recognition (CVPR), 2020

  • Deep Audio Priors Emerge From Harmonic Convolutional Networks
    Zhoutong Zhang, Yunyun Wang, Chuang Gan, Jiajun Wu, Joshua B Tenenbaum, Antonio Torralba, William T Freeman
    International Conference on Learning Representations (ICLR), 2019

  • Reasoning about physical interactions with object-centric models
    Michael Janner, Sergey Levine, William T Freeman, Joshua B Tenenbaum, Chelsea Finn, Jiajun Wu
    International Conference on Learning Representations (ICLR), 2019

  • Boundless: Generative adversarial networks for image extension
    Piotr Teterwak, Aaron Sarna, Dilip Krishnan, Aaron Maschinot, David Belanger, Ce Liu, William T Freeman
    IEEE International Conference on Computer Vision(ICCV), 2019

  • Learning shape templates with structured implicit functions
    Kyle Genova, Forrester Cole, Daniel Vlasic, Aaron Sarna, William T Freeman, Thomas Funkhouser
    IEEE International Conference on Computer Vision(ICCV), 2019

  • Visual Dynamics: Stochastic Future Generation via Layered Cross Convolutional Networks
    Tianfan Xue, Jiajun Wu, Katherine L. Bouman, and William T. Freeman
    IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2019

  • Best-Buddies Similarity for Robust Template Matching
    Tali Dekel, Shaul Oron, Michael Rubinstein, Shai Avidan, William T. Freeman
    Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015

  • Shape Recipes: Scene Representations that Refer to the Image
    William T. Freeman, Antonio Torralba
    Neural Information Processing Systems (NIPS) 2002

  • Group Norm for Learning Structured SVMs with Unstructured Latent Variables
    Daowen Chen, Dhruv Batra, William T. Freeman
    2013 IEEE International Conference on Computer Vision (ICCV)

  • Bayesian decision theory, the maximum local mass estimate, and color constancy
    W. T. Freeman and D. H. Brainard
    Fifth International Conference on Computer Vision, IEEE Computer Society, Cambridge, MA, U.S.A, June, 1995, pp. 210 – 217

  • A factorization approach to grouping
    P. Perona and W. T. Freeman
    Proceedings, European Conference on Computer Vision, 1998

  • Correctness of Belief Propagation in Gaussian Graphical Models of Arbitrary Topology
    Y. Weiss and W. T. Freeman
    Advances in Neural Information Processing Systems 12, edited by S. A. Solla, T. K. Leen, and K-R Muller, 2000

  • On the optimality of solutions of the max-product belief propagation algorithm in arbitrary graphs
    Y. Weiss and W. T. Freeman
    IEEE Trans. Information Theory, Special Issue on Codes on Graphs and Iterative Algorithms, 47(2), pp. 723-735, 2001

  • Learning Low-Level Vision
    W. T. Freeman, E. C. Pasztor, O. T. Carmichael
    International Journal of Computer Vision, 40(1), pp. 25-47, 2000

  • Learning Joint Statistical Models for Audio-Visual Fusion and Segregation
    J. W. Fisher, T. Darrell, W. T. Freeman and P. Viola
    Advances in Neural Information Processing Systems 13, edited by T. K. Leen, T. G. dietterich, and V. Tresp, pp. 772-778, 2001

  • Generalized Belief Propagation
    J. Yedidia, W. T. Freeman, and Y. Weiss
    Neural Information Processing Systems 13, edited by T. K. Leen, T. G. dietterich, and V. Tresp, pp. 689-695, 2001

  • Understanding belief propagation and its generalizations
    J. Yedidia, W. T. Freeman and Y. Weiss
    International Joint Conference on Artificial Intelligence (IJCAI 2001), Distinguished Papers Track

  • Constructing Free Energy Approximations and Generalized Belief Propagation Algorithms
    J. S. Yedidia, W. T. Freeman, and Y. Weiss
    IEEE Transactions on Information Theory, ISSN; 0018-9448, Vol. 51, Issue 7, pp. 2282-2312, July 2005

  • Nonparametric Belief Propagation and Facial Appearance Estimation
    E. B. Sudderth, A. T. Ihler, W. T. Freeman and A. S. Willsky
    IEEE Computer Vision and Pattern Recognition (CVPR), Madison, WI, June, 2003

  • Comparison of graph cuts with belief propagation for stereo, using identical MRF parameters
    M. F. Tappen and W. T. Freeman
    IEEE Intl. Conference on Computer Vision (ICCV), Nice, France, October, 2003

  • Efficient multiscale sampling from products of Gaussian mixtures
    A. T. Ihler, E. B. Sudderth, W. T. Freeman, and A. S. Willsky
    Advances in Neural Information Processing Systems 16 (NIPS), Vancouver, BC, MIT Press, 2004

  • Sharing visual features for multiclass and multiview object detection
    A. Torralba, K. P. Murphy, and W. T. Freeman
    IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) Washington, DC, 2004; MIT CSAIL technical report

  • Shared features for multiclass object detection
    A. Torralba, K. Murphy, W. T. Freeman
    Towards Category-Level Object Recognition. Springer Lecture Notes in Computer Science (invited submission). 2005

  • Sharing visual features for multiclass and multiview object detection
    A. Torralba, K. P. Murphy, and W. T. Freeman
    IEEE Transactions on Pattern Analysis and Machine Intelligence , vol. 29, no. 5, pp. 854-869, May, 2007

  • What makes a good model of natural images?
    Y. Weiss and W. T. Freeman
    IEEE Computer Vision and Pattern Recognition (CVPR) 2007

  • Signal and Image Processing with Belief Propagation
    E. Sudderth and W. T. Freeman
    DSP Application Column, IEEE Signal Processing Magazine, Mar. 2008

  • Nonparametric Belief Propagation
    Erik B. Sudderth, Alexander T. Ihler, Michael Isard, William T. Freeman, and Alan S. Willsky
    Communications of the ACM, October, 2010

  • Exploiting compositionality to explore a large space of model structures
    Roger B. Grosse, Ruslan Salakhutdinov, William T. Freeman, and Joshua B. Tenenbaum
    Conf. on Uncertainty in Artificial Intelligence (UAI), August 2012

    Best Student Paper Prize