PUBLICATIONS
Publications by Theme:
Machine learning
-
FeatUp: A Model-Agnostic Framework for Features at Any ResolutionStephanie Fu, Mark Hamilton, Laura Brandt, Axel Feldman, Zhoutong Zhang, William T. FreemanInternational Conference on Learning Representations (ICLR) 2024 -
Diffusion with forward models: Solving stochastic inverse problems without direct supervisionAyush Tewari, Tianwei Yin, George Cazenavette, Semon Rezchikov, Josh Tenenbaum, Frédo Durand, Bill Freeman, Vincent SitzmannAdvances in Neural Information Processing Systems 2023 -
Separating the” Chirp” from the” Chat”: Self-supervised Visual Grounding of Sound and LanguageMark Hamilton, Andrew Zisserman, John R Hershey, William T FreemanIEEE/CVF Conference on Computer Vision and Pattern Recognition 2024 -
Alchemist: Parametric control of material properties with diffusion modelsPrafull Sharma, Varun Jampani, Yuanzhen Li, Xuhui Jia, Dmitry Lagun, Fredo Durand, Bill Freeman, Mark MatthewsIEEE/CVF Conference on Computer Vision and Pattern Recognition 2024 -
One-step diffusion with distribution matching distillationTianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shechtman, Fredo Durand, William T Freeman, Taesung ParkIEEE/CVF Conference on Computer Vision and Pattern Recognition 2024 -
Muse: Text-To-Image Generation via Masked Generative TransformersHuiwen Chang, Han Zhang, Jarred Barber, Aaron Maschinot, Jose Lezama, Lu Jiang, Ming-Hsuan Yang, Kevin Patrick Murphy, William T. Freeman, Michael Rubinstein, Yuanzhen Li, Dilip KrishnanInternational Conference on Machine Learning 2023 -
Associating objects and their effects in video through coordination gamesErika Lu, Forrester Cole, Weidi Xie, Tali Dekel, Bill Freeman, Andrew Zisserman, Michael RubinsteinAdvances in Neural Information Processing Systems 2022 -
3d motion magnification: Visualizing subtle motions from time-varying radiance fieldsBrandon Y Feng, Hadi Alzayer, Michael Rubinstein, William T Freeman, Jia-Bin HuangIEEE/CVF International Conference on Computer Vision 2023 -
Score-based diffusion models as principled priors for inverse imagingBerthy T Feng, Jamie Smith, Michael Rubinstein, Huiwen Chang, Katherine L Bouman, William T FreemanIEEE/CVF International Conference on Computer Vision 2023 -
Unsupervised semantic segmentation by distilling feature correspondencesMark Hamilton, Zhoutong Zhang, Bharath Hariharan, Noah Snavely, William T FreemanInternational Conference on Learning Representations (ICLR) 2022 -
Axiomatic Explanations for Visual Search, Retrieval, and Similarity LearningMark Hamilton, Scott Lundberg, Lei Zhang, Stephanie Fu, William T FreemanInternational Conference on Learning Representations (ICLR) 2022 -
What you can learn by staring at a blank wallPrafull Sharma, Miika Aittala, Yoav Y Schechner, Antonio Torralba, Gregory W Wornell, William T Freeman, Frédo DurandInternational Conference on Computer Vision (ICCV) 2021 -
Large-scale intelligent microservicesMark Hamilton, Nick Gonsalves, Christina Lee, Anand Raman, Brendan Walsh, Siddhartha Prasad, Dalitso Banda, Lucy Zhang, Lei Zhang, William T FreemanIEEE International Conference on Big Data (Big Data) 2020 -
Multi-plane program induction with 3d box priorsYikai Li, Jiayuan Mao, Xiuming Zhang, Bill Freeman, Josh Tenenbaum, Noah Snavely, Jiajun WuAdvances in Neural Information Processing Systems (NeurIPS) 2020 -
Weakly Supervised 3D Human Pose and Shape Reconstruction with Normalizing FlowsAndrei Zanfir, Eduard Gabriel Bazavan, Hongyi Xu, Bill Freeman, Rahul Sukthankar, Cristian SminchisescuEuropean Conference on Computer Vision (ECCV), 2020 -
GHUM & GHUML: Generative 3D Human Shape and Articulated Pose ModelsHongyi Xu, Eduard Gabriel Bazavan, Andrei Zanfir, William T Freeman, Rahul Sukthankar, Cristian SminchisescuConference on Computer Vision and Pattern Recognition (CVPR), 2020 -
Perspective Plane Program Induction From a Single ImageYikai Li, Jiayuan Mao, Xiuming Zhang, William T Freeman, Joshua B Tenenbaum, Jiajun WuComputer Vision and Pattern Recognition(CVPR), 2020 -
SpeedNet: Learning the Speediness in VideosSagie Benaim, Ariel Ephrat, Oran Lang, Inbar Mosseri, William T Freeman, Michael Rubinstein, Michal Irani, Tali DekelConference on Computer Vision and Pattern Recognition (CVPR), 2020 -
Semantic Pyramid for Image GenerationAssaf Shocher, Yossi Gandelsman, Inbar Mosseri, Michal Yarom, Michal Irani, William T Freeman, Tali DekelComputer Vision and Pattern Recognition (CVPR), 2020 -
Deep Audio Priors Emerge From Harmonic Convolutional NetworksZhoutong Zhang, Yunyun Wang, Chuang Gan, Jiajun Wu, Joshua B Tenenbaum, Antonio Torralba, William T FreemanInternational Conference on Learning Representations (ICLR), 2019 -
Reasoning about physical interactions with object-centric modelsMichael Janner, Sergey Levine, William T Freeman, Joshua B Tenenbaum, Chelsea Finn, Jiajun WuInternational Conference on Learning Representations (ICLR), 2019 -
Boundless: Generative adversarial networks for image extensionPiotr Teterwak, Aaron Sarna, Dilip Krishnan, Aaron Maschinot, David Belanger, Ce Liu, William T FreemanIEEE International Conference on Computer Vision(ICCV), 2019 -
Learning shape templates with structured implicit functionsKyle Genova, Forrester Cole, Daniel Vlasic, Aaron Sarna, William T Freeman, Thomas FunkhouserIEEE International Conference on Computer Vision(ICCV), 2019 -
Visual Dynamics: Stochastic Future Generation via Layered Cross Convolutional NetworksTianfan Xue, Jiajun Wu, Katherine L. Bouman, and William T. FreemanIEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2019 -
Best-Buddies Similarity for Robust Template MatchingTali Dekel, Shaul Oron, Michael Rubinstein, Shai Avidan, William T. FreemanProceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015 -
Shape Recipes: Scene Representations that Refer to the ImageWilliam T. Freeman, Antonio TorralbaNeural Information Processing Systems (NIPS) 2002 -
Group Norm for Learning Structured SVMs with Unstructured Latent VariablesDaowen Chen, Dhruv Batra, William T. Freeman2013 IEEE International Conference on Computer Vision (ICCV) -
Bayesian decision theory, the maximum local mass estimate, and color constancyW. T. Freeman and D. H. BrainardFifth International Conference on Computer Vision, IEEE Computer Society, Cambridge, MA, U.S.A, June, 1995, pp. 210 – 217 -
A factorization approach to groupingP. Perona and W. T. FreemanProceedings, European Conference on Computer Vision, 1998 -
Correctness of Belief Propagation in Gaussian Graphical Models of Arbitrary TopologyY. Weiss and W. T. FreemanAdvances in Neural Information Processing Systems 12, edited by S. A. Solla, T. K. Leen, and K-R Muller, 2000 -
On the optimality of solutions of the max-product belief propagation algorithm in arbitrary graphsY. Weiss and W. T. FreemanIEEE Trans. Information Theory, Special Issue on Codes on Graphs and Iterative Algorithms, 47(2), pp. 723-735, 2001 -
Learning Low-Level VisionW. T. Freeman, E. C. Pasztor, O. T. CarmichaelInternational Journal of Computer Vision, 40(1), pp. 25-47, 2000 -
Learning Joint Statistical Models for Audio-Visual Fusion and SegregationJ. W. Fisher, T. Darrell, W. T. Freeman and P. ViolaAdvances in Neural Information Processing Systems 13, edited by T. K. Leen, T. G. dietterich, and V. Tresp, pp. 772-778, 2001 -
Generalized Belief PropagationJ. Yedidia, W. T. Freeman, and Y. WeissNeural Information Processing Systems 13, edited by T. K. Leen, T. G. dietterich, and V. Tresp, pp. 689-695, 2001 -
Understanding belief propagation and its generalizationsJ. Yedidia, W. T. Freeman and Y. WeissInternational Joint Conference on Artificial Intelligence (IJCAI 2001), Distinguished Papers Track -
Constructing Free Energy Approximations and Generalized Belief Propagation AlgorithmsJ. S. Yedidia, W. T. Freeman, and Y. WeissIEEE Transactions on Information Theory, ISSN; 0018-9448, Vol. 51, Issue 7, pp. 2282-2312, July 2005 -
Nonparametric Belief Propagation and Facial Appearance EstimationE. B. Sudderth, A. T. Ihler, W. T. Freeman and A. S. WillskyIEEE Computer Vision and Pattern Recognition (CVPR), Madison, WI, June, 2003 -
Comparison of graph cuts with belief propagation for stereo, using identical MRF parametersM. F. Tappen and W. T. FreemanIEEE Intl. Conference on Computer Vision (ICCV), Nice, France, October, 2003 -
Efficient multiscale sampling from products of Gaussian mixturesA. T. Ihler, E. B. Sudderth, W. T. Freeman, and A. S. WillskyAdvances in Neural Information Processing Systems 16 (NIPS), Vancouver, BC, MIT Press, 2004 -
Sharing visual features for multiclass and multiview object detectionA. Torralba, K. P. Murphy, and W. T. FreemanIEEE Conf. on Computer Vision and Pattern Recognition (CVPR) Washington, DC, 2004; MIT CSAIL technical report -
Shared features for multiclass object detectionA. Torralba, K. Murphy, W. T. FreemanTowards Category-Level Object Recognition. Springer Lecture Notes in Computer Science (invited submission). 2005 -
Sharing visual features for multiclass and multiview object detectionA. Torralba, K. P. Murphy, and W. T. FreemanIEEE Transactions on Pattern Analysis and Machine Intelligence , vol. 29, no. 5, pp. 854-869, May, 2007 -
What makes a good model of natural images?Y. Weiss and W. T. FreemanIEEE Computer Vision and Pattern Recognition (CVPR) 2007 -
Signal and Image Processing with Belief PropagationE. Sudderth and W. T. FreemanDSP Application Column, IEEE Signal Processing Magazine, Mar. 2008 -
Nonparametric Belief PropagationErik B. Sudderth, Alexander T. Ihler, Michael Isard, William T. Freeman, and Alan S. WillskyCommunications of the ACM, October, 2010 -
Exploiting compositionality to explore a large space of model structuresRoger B. Grosse, Ruslan Salakhutdinov, William T. Freeman, and Joshua B. TenenbaumConf. on Uncertainty in Artificial Intelligence (UAI), August 2012Best Student Paper Prize