All Publications


  • Informative Sensing of Natural Images
    Hyun Sung Chang, Yair Weiss, William T. Freeman
    IEEE Int. Conf. Image Processing, Egypt, Nov. 2009

  • 4D Frequency Analysis of Computational Cameras for Depth of Field Extension
    Anat Levin, S. Hasinoff, P. Green, F. Durand, W. T. Freeman
    SIGGRAPH, ACM Transactions on Graphics, Aug 2009

  • Understanding and evaluating blind deconvolution algorithms
    A. Levin, Y. Weiss, F. Durand, and W. T. Freeman
    IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), June 2009

    Best paper award runner up


  • SIFT Flow: Dense Correspondence across Different Scenes
    C. Liu, J. Yuen, A. Torralba, J. Sivic, W. T. Freeman
    European Conference on Computer Vision, ECCV 2008

  • Understanding camera trade-offs through a Bayesian analysis of light field projections
    A. Levin, W. T. Freeman, and F. Durand
    European Conference on Computer Vision, ECCV 2008

  • LabelMe: a Database and Web-based Tool for Image Annotation
    B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman
    International Journal of Computer Vision, 77(1-3):157-173, 2008

  • 80 million tiny images: a large dataset for non-parametric object and scene recognition
    A. Torralba, R. Fergus, and W. T. Freeman
    IEEE Transactions on Pattern Analysis and Machine Intelligence., Volume 30 , Issue 11 (November 2008), Pages: 1958-1970

  • Motion-Invariant Photography
    A. Levin, P. Sand, T. S. Cho, F. Durand, W. T. Freeman
    ACM Transactions on Graphics, 27(3), (Proc. SIGGRAPH), August, 2008

  • Creating and exploring a large photorealistic virtual space
    J. Sivic, B. Kaneva, A. Torralba, S. Avidan and W. T. Freeman
    First IEEE Workshop on Internet Vision, associated with CVPR 2008

  • Human-assisted motion annotation
    C. Liu, W. T. Freeman, E. H. Adelson and Y. Weiss
    IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2008

  • The patch transform and its applications to image editing
    Taeg Sang Cho, Moshe Butman, Shai Avidan, William T. Freeman
    IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2008

    Best Poster Award, CVPR 2008


  • Unsupervised Discovery of Visual Object Class Hierarchies
    J. Sivic, B. C. Russell, A. Zisserman, W. T. Freeman, and A. A. Efros
    IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2008

  • Describing visual scenes using transformed objects and parts
    E. Sudderth, A. Torralba, W. T. Freeman, and A. Willsky
    International Journal of Computer Vision, 77, May 2008

  • Signal and Image Processing with Belief Propagation
    E. Sudderth and W. T. Freeman
    DSP Application Column, IEEE Signal Processing Magazine, Mar. 2008

  • Automatic estimation and removal of noise from a single image
    C. Liu, R. Szeliski, S. B. Kang, C. L. Zitnick, and W. T. Freeman
    IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), Vol 30, No. 2, pp. 299-314, Feb., 2008

  • Learning Compressed Sensing
    Yair Weiss, Hyun Sung Chang and William T. Freeman
    45th Allerton Conference on Communication, Control, and Computing, 2007

  • Object Recognition by Scene Alignment
    B. C. Russell, A. Torralba, C. Liu, R. Fergus, W. T. Freeman
    Advances in Neural Information Processing Systems (NIPS), 2007

  • A reliable skin mole localization scheme
    Taeg Sang Cho, William T. Freeman, Hensin Tsao
    2007 IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA), in conjunction with 2007 ICCV

  • Image and depth from a conventional camera with a coded aperture
    A. Levin, R. Fergus, F. Durand, and W. T. Freeman
    ACM Trans. On Graphics (Proc. SIGGRAPH) 2007

  • Face Hallucination: theory and practice
    C. Liu, H. Y. Shum and W. T. Freeman
    International Journal of Computer Vision, Vol. 75, no. 1, pp. 115-134, October, 2007

  • Learning Gaussian Conditional Random Fields for Low-Level Vision
    M. F. Tappen, C. Liu, W. T. Freeman, and E. H. Adelson
    IEEE Computer Vision and Pattern Recognition (CVPR) 2007

  • What makes a good model of natural images?
    Y. Weiss and W. T. Freeman
    IEEE Computer Vision and Pattern Recognition (CVPR) 2007

  • Sharing visual features for multiclass and multiview object detection
    A. Torralba, K. P. Murphy, and W. T. Freeman
    IEEE Transactions on Pattern Analysis and Machine Intelligence , vol. 29, no. 5, pp. 854-869, May, 2007

  • Exploring defocus matting: non-parametric acceleration, super-resolution, and off-center matting
    N. Joshi, W. Matusik, S. Avidan, H. Pfister, and W. T. Freeman
    IEEE Computer Graphics and Applications, special issue on Computational Photography, March, 2007

  • Random Lens Imaging
    Rob Fergus, Antonio Torralba and William T. Freeman
    MIT CSAIL Technical Report 2006-058, 2006

  • Removing camera shake from a single image
    R. Fergus, B. Singh, A. Hertzmann, S. Roweis, and W. T. Freeman
    SIGGRAPH 2006

  • Analysis of contour motions
    C. Liu, W. T. Freeman and E. H. Adelson
    Advances in Neural Information Processing Systems (NIPS 2006)

    Received Outstanding Student Paper Award


  • Bayesian model of human color constancy
    D. H. Brainard, P. Longere, P. B. Delahunt, W. T. Freeman, J. M. Kraft, and B. Xiao
    Journal of Vision, 6, 1267-1281, doi:10.1167/6.11.10. 2006

  • Estimating Intrinsic Component Images using Non-Linear Regression
    M. Tappen, E. Adelson, and W. T. Freeman
    IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) New York, NY, June, 2006

  • Depth from familiar objects: a hierarchical model for 3d scenes
    E. Sudderth, A. Torralba, W. T. Freeman, and A. Willsky
    IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) New York, NY, June, 2006

  • Noise estimation from a single image
    C. Liu, W. T. Freeman, R. Szeliski, and S. B. Kang
    IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) New York, NY, June, 2006

  • Using multiple segmentations to discover objects and their extent in image collections
    B. C. Russell, , A. Efros, J. Sivic, W. T. Freeman, and A. Zisserman
    IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) New York, NY, June, 2006

  • Object detection and localization using local and global features
    K. Murphy, A. Torralba, D. Eaton, W. T. Freeman
    Lecture Notes in Computer Science (unrefeered). Sicily workshop on object recognition, 2005

  • Shared features for multiclass object detection
    A. Torralba, K. Murphy, W. T. Freeman
    Towards Category-Level Object Recognition. Springer Lecture Notes in Computer Science (invited submission). 2005

  • Motion Magnification
    Ce Liu, Antonio Torralba, William Freeman, Fredo Durand, and Edward Adelson
    SIGGRAPH 2005

  • Describing Visual Scenes using Transformed Dirichlet
    E. Sudderth, A. Torralba, W. Freeman, and A. Willsky
    Neural Information Processing Systems (NIPS), Vancouver, B.C., Dec. 2005

  • Discovering Objects and their Location in Images
    J. Sivic, B. Russell, A. A. Efros, A. Zisserman, W. T. Freeman
    International Conference on Computer Vision (ICCV), Beijing, China, Oct. 2005

    Received 2017 Helmholtz prize, test-of-time award.


  • An Ensemble Prior of Image Structure for Cross-modal Inference
    S. Ravela, A. Torralba, W. T. Freeman
    International Conference on Computer Vision (ICCV), Beijing, China, vol. 1, pp. 871-876, Oct. 2005

  • Learning Hierarchical Models of Scenes, Objects, and Parts
    E. Sudderth, A. Torralba, W. Freeman, and A. Willsky
    International Conference on Computer Vision (ICCV), Beijing, China, Oct. 2005

  • Recovering Intrinsic Images from a Single Image
    M. F. Tappen, W. T. Freeman, and E. H. Adelson
    IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume 27, Issue 9, September 2005, Pages 1459 – 1472

  • LabelMe: a database and web-based tool for image annotation
    B. Russell, A. Torralba, K. Murphy, W. T. Freeman
    MIT AI Lab Memo AIM-2005-025, September, 2005

  • Constructing Free Energy Approximations and Generalized Belief Propagation Algorithms
    J. S. Yedidia, W. T. Freeman, and Y. Weiss
    IEEE Transactions on Information Theory, ISSN; 0018-9448, Vol. 51, Issue 7, pp. 2282-2312, July 2005

  • Distributed Occlusion Reasoning for Tracking with Nonparametric Belief Propagation
    Propagation E. Sudderth, M. Mandel, W. Freeman, and A. Willsky
    Neural Information Processing Systems (NIPS) 2004

  • Using the forest to see the trees: a graphical model relating features, objects, and scenes
    K. Murphy, A. Torralba, and W. T. Freeman
    Advances in Neural Information Processing Systems 16 (NIPS), Vancouver, BC, MIT Press, 2004

  • Efficient multiscale sampling from products of Gaussian mixtures
    A. T. Ihler, E. B. Sudderth, W. T. Freeman, and A. S. Willsky
    Advances in Neural Information Processing Systems 16 (NIPS), Vancouver, BC, MIT Press, 2004

  • Contextual Models for Object Detection Using Boosted Random Fields
    Antonio Torralba, Kevin P. Murphy, William T. Freeman
    Neural Information Processing Systems (NIPS), Vancouver, B.C., Dec. 2004

  • Single-frame Text Super-resolution: A Bayesian Approach
    G. Dalley, W. T. Freeman, and J. Marks
    International Conference on Image Processing (ICIP), Oct. 2004

  • Sharing visual features for multiclass and multiview object detection
    A. Torralba, K. P. Murphy, and W. T. Freeman
    IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) Washington, DC, 2004; MIT CSAIL technical report

  • Efficient graphical models for processing images
    M. F. Tappen, B. C. Russell, and W. T. Freeman
    IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) Washington, DC, 2004

  • Visual Hand Tracking Using Nonparametric Belief Propagation
    E. Sudderth, M. Mandel, W. Freeman, and A. Willsky
    Workshop on Generative Model Based Vision, CVPR, June 2004

  • Exploiting the sparse derivative prior for super-resolution and image demosaicing
    M. F. Tappen, B. C. Russell, and W. T. Freeman
    3rd Intl. Workshop on Statistical and Computational Theories of Vision (associated with Intl. Conf. on Computer Vision), Nice, France, October, 2003

  • Exploiting spatial and spectral image regularities for color constancy
    B. Singh, W. T. Freeman, and D. H. Brainard
    3rd Intl. Workshop on Statistical and Computational Theories of Vision (associated with Intl. Conf. on Computer Vision), Nice, France, October, 2003

  • Comparison of graph cuts with belief propagation for stereo, using identical MRF parameters
    M. F. Tappen and W. T. Freeman
    IEEE Intl. Conference on Computer Vision (ICCV), Nice, France, October, 2003

  • Context-based vision system for place and object recognition
    A. Torralba, K. P. Murphy, W. T. Freeman, and M. A. Rubin
    IEEE Intl. Conference on Computer Vision (ICCV), Nice, France, October, 2003

  • Shape-Time Photography
    W. T Freeman and H. Zhang
    IEEE Computer Vision and Pattern Recognition (CVPR), Madison, WI, June, 2003

  • Nonparametric Belief Propagation and Facial Appearance Estimation
    E. B. Sudderth, A. T. Ihler, W. T. Freeman and A. S. Willsky
    IEEE Computer Vision and Pattern Recognition (CVPR), Madison, WI, June, 2003

  • Properties and Applications of Shape Recipes
    A. Torralba and W. T. Freeman
    IEEE Computer Vision and Pattern Recognition (CVPR), Madison, WI, June, 2003

  • Learning style translation for the lines of a drawing
    W. T. Freeman, J. B. Tenenbaum, E. Pasztor
    ACM Transactions on Graphics, January, 2003

  • Shape-Time Photography
    W. T. Freeman and H. Zhang
    MIT Artificial Intelligence Lab Memo 2002-002

  • Shape Recipes: Scene Representations that Refer to the Image
    William T. Freeman, Antonio Torralba
    Neural Information Processing Systems (NIPS) 2002

  • Example-based super-resolution
    William T. Freeman, Thouis R. Jones, and Egon C. Pasztor
    IEEE Computer Graphics and Applications, March/April, 2002.

     Test-of-time award given in 2023 from IEEE CG&A.


  • Teaching applied computing without programming: a case-based introductory course for general education
    Joe Marks, William Freeman, and Henry Leitner
    Proceedings of the thirty-second SIGCSE technical symposium on Computer Science Education, Charlotte, North Carolina, 2001

  • Image quilting for texture synthesis and transfer
    A. Efros and W. T Freeman
    SIGGRAPH 2001

  • Learning local evidence for shading and reflectance
    M. Bell and W. T. Freeman
    International Conference on Computer Vision, Vancouver, BC, Canada, 2001

  • Understanding belief propagation and its generalizations
    J. Yedidia, W. T. Freeman and Y. Weiss
    International Joint Conference on Artificial Intelligence (IJCAI 2001), Distinguished Papers Track

  • Generalized Belief Propagation
    J. Yedidia, W. T. Freeman, and Y. Weiss
    Neural Information Processing Systems 13, edited by T. K. Leen, T. G. dietterich, and V. Tresp, pp. 689-695, 2001

  • Learning Joint Statistical Models for Audio-Visual Fusion and Segregation
    J. W. Fisher, T. Darrell, W. T. Freeman and P. Viola
    Advances in Neural Information Processing Systems 13, edited by T. K. Leen, T. G. dietterich, and V. Tresp, pp. 772-778, 2001

  • Learning Motion Analysis
    W. T. Freeman, J. A. Haddon, and E. C. Pasztor
    Statistical Theories of the Brain, edited by R. Rao, B. Olshausen, and M. Lewicki, MIT Press, 2001

  • On the optimality of solutions of the max-product belief propagation algorithm in arbitrary graphs
    Y. Weiss and W. T. Freeman
    IEEE Trans. Information Theory, Special Issue on Codes on Graphs and Iterative Algorithms, 47(2), pp. 723-735, 2001

  • Learning Low-Level Vision
    W. T. Freeman, E. C. Pasztor, O. T. Carmichael
    International Journal of Computer Vision, 40(1), pp. 25-47, 2000

  • Bayesian Reconstruction of 3D Human Motion from Single-Camera Video
    Nicholas R. Howe, Michael E. Leventon, William T. Freeman
    Advances in Neural Information Processing Systems 12, edited by S. A. Solla, T. K. Leen, and K-R Muller, 2000

  • Correctness of Belief Propagation in Gaussian Graphical Models of Arbitrary Topology
    Y. Weiss and W. T. Freeman
    Advances in Neural Information Processing Systems 12, edited by S. A. Solla, T. K. Leen, and K-R Muller, 2000

  • Separating style and content with bilinear models
    Joshua B. Tenenbaum, William T. Freeman
    Neural Computation 12(6), pp. 1247-1283, 2000

  • Markov networks for super-resolution
    W. T. Freeman and E. C. Pasztor
    Proceedings of 34th Annual Conference on Information Sciences and Systems (CISS 2000), Dept. Electrical Engineering, Princeton University, Princeton, NJ 08544-5263, March, 2000

  • Review of “Biometrics: personal identification in a networked society”
    W. T. Freeman
    Pattern Analysis and Applications, March, 2000

  • Learning low-level vision
    William T. Freeman, Egon C. Pasztor
    Appeared in IEEE International Conference on Computer Vision, Corfu, Greece, 1999

  • Artificial retina chips as on-chip image processors and gesture-oriented interfaces
    H. Kage, W. T. Freeman, Y. Miyake, E. Funatsu, K. Tanaka, K. Kyuma
    Optical Engineering, Vol. 38, No. 12, December, 1999

  • Computer vision for computer interaction
    W. T. Freeman, P. Beardsley, H. Kage, K. Tanaka, K. Kyuma, C. Weissman
    SIGGRAPH Computer Graphics magazine, November, 1999

  • An Inexpensive, All Solid-state Video and Data Recorder for Accident Reconstruction
    W. S. Yerazunis, D. L. Leigh, W. T. Freeman, R. S. Bardsley
    Presented at the 1999 SAE International Congress and Exposition in Detroit, Michigan on March 3, 1999; published as SAE Technical Paper number 1999-10-1299

  • An example-based approach to style translation for line drawings
    W. T. Freeman, J. B. Tenenbaum, E. Pasztor
    Tech. Rep. TR99-11, Mitsubishi Electric Research Laboratories, Cambridge, MA, February 1999

  • Markov networks for low-level vision
    William T. Freeman, Egon C. Pasztor
    Presented at Workshop on Statistical and Computational Theories of Vision

  • Learning to estimate scenes from images
    William T. Freeman, Egon C. Pasztor
    Neural Information Processing Systems, volume 11, 1999

  • A factorization approach to grouping
    P. Perona and W. T. Freeman
    Proceedings, European Conference on Computer Vision, 1998

  • Bayesian model of surface perception
    W. T. Freeman and P. A. Viola
    Neural Information Processing Systems, volume 10, pp. 787-793, 1998

  • Bayesian Estimation of 3-D Human Motion
    Michael E. Leventon, William T. Freeman
    Tech. Rep. TR98-06, Mitsubishi Electric Research Laboratories, Cambridge, MA, July 1998

  • Computer vision for interactive computer graphics
    W. T. Freeman, D. Anderson, P. Beardsley, C. Dodge, H. Kage, K. Kyuma, Y. Miyake, M. Roth, K. Tanaka, C. Weissman, W. Yerazunis
    IEEE Computer Graphics and Applications, volume 18, number 3, May-June, pp. 42-53, 1998

  • Separating Style and Content
    J. B. Tenenbaum and W. T. Freeman
    Neural Information Processing Systems 9, M. C. Mozer, M. I. Jordan and T. Petsche, Eds., Morgan Kaufmann, San Mateo, CA., 1997

  • Design Galleries: A General Approach to Setting Parameters for Computer Graphics and Animation
    J. Marks, B. Andalman, P. Beardsley, W. Freeman, S. Gibson, J. Hodgins, T. Kang, B. Mirtich, H. Pfister, W. Ruml, K. Ryall, J. Seims, S. Shieber
    ACM Computer Graphics, vol. 31, no. 4, (SIGGRAPH ’97) August, 1997

  • Bayesian Color Constancy
    D. H. Brainard and W. T. Freeman
    Journal of the Optical Society of America, A, 14(7), pp. 1393-1411, July, 1997

  • Learning bilinear models for two-factor problems in vision
    W. T. Freeman and J. B. Tenenbaum
    IEEE Conference on Computer Vision and Pattern Recognition (CVPR ’97), Puerto Rico, U. S. A., June, 1997

    Received Outstanding Paper prize, CVPR '97


  • Exploiting the generic viewpoint assumption
    W. T. Freeman
    International Journal Computer Vision, 20 (3), 243-261, 1996

  • The generic viewpoint assumption in a Bayesian framework
    W. T. Freeman
    Perception as Bayesian Inference, D. Knill and W. Richards, eds., Cambridge University Press, 365 – 390, 1996

  • Computer vision for computer games
    W. T. Freeman, K. Tanaka, J. Ohta, and K. Kyuma
    , 2nd International Conference on Automatic Face and Gesture Recognition, Killington, VT, USA, pp. 100-105

  • Example-based head tracking
    S. Niyogi and W. T. Freeman
    2nd International Conference on Automatic Face and Gesture Recognition, Killington, VT, USA.

  • A gesture controlled human interface using an artificial retina chip
    Y. Miyake, W. T. Freeman, J. Ohta, K. Tanaka, and K. Kyuma
    IEEE Lasers and Electro-Optics (LEOS ’96), July, 1996

  • Artificial retina chips as image input interfaces for multimedia systems
    T. Toyoda, Y. Nitta, E. Funatsu, Y. Miyake, W. Freeman, J. Ohta, and K. Kyuma
    Optoelectronics and Communications Conference, OECC’96, Chiba, Japan, July, 1996

  • The steerable pyramid: a flexible architecture for multi-scale derivative computation
    E. P. Simoncelli and W. T. Freeman
    2nd Annual IEEE International Conference on Image Processing, Washington, DC. October, 1995

  • Bayesian decision theory, the maximum local mass estimate, and color constancy
    W. T. Freeman and D. H. Brainard
    Fifth International Conference on Computer Vision, IEEE Computer Society, Cambridge, MA, U.S.A, June, 1995, pp. 210 – 217

  • Television control by hand gestures
    W. T. Freeman and C. Weissman
    International Workshop on Automatic Face- and Gesture- Recognition, IEEE Computer Society, Zurich, Switzerland, June, 1995, pp. 179-183

  • Orientation histograms for hand gesture recognition
    W. T. Freeman and M. Roth
    International Workshop on Automatic Face- and Gesture- Recognition, IEEE Computer Society, Zurich, Switzerland, June, 1995, pp. 296-301

    Winner, 2013 Test-of-time award from Face and Gesture Recognition conference. Here is a video prepared to accept the test-of-time award, describing the work in its context, in .mov format, or in .mpeg format.